CROSSECTION FOR CREATION OF H_{2}^{-}IONS IN TWO-BODY

 COLLISIONSI.A.Pshenichnyuk, M.Čížek, J.Horáček
Institute of Theoretical Physics, Charles University, Prague, Czech Republic

Abstract

At prese (see for ex. [33). In spite of the fact that there are some discrepancies between the theory initio data succeessfuilly explain stability of such ions by their rotation with large angula initio data successtully explain stability of such ions by their rotation with large angular
momentum ($\mathrm{J} \sim 25$). NRM calculations are used here to obtaian the cross sections of creation of such ions in $H_{2}+e^{-}$and $H+H^{-}$collisions. The object of present study

The formation of the intermediate metastable state H_{2} shows itself as narrow $\left(\sim 10^{-5}\right.$
$\left.10^{-8} \mathrm{eV}\right)$ peak in the cross sections for the elastic scattering, vibrational excitation and dissociative attachment. The behavior of the cross section curves close to the resonanc description of a resonance to few parameters with defined physical meaning. When these parameters are determined by fitting the background term could be removed to lifetime (through the width Γ). The plan for the analysis of the cross sections close to the resonance will be following

This procedure is performed for 6 resonances $(J=25,26$ and 27) with the largest
lifetimes (best objects for observation)

Multichannel Fano formula

Multichanel scattering matrix $S(\mathbb{E})$ close to the simple pole $E=E_{\text {R }}-i \Gamma / 2$ (whic
corresponds to the resonance in complex plane) could be presented as (see $[41)$
$\hat{S}=\hat{B}-\frac{i C}{E-E_{x}+i \Gamma / 2}$
Matrix B here represent background (second term goes to zero while E goes to infinity)
and C is a substitution matrix. Multichannel scatter and C is a substiution matrix. Multichannel scattering amplitude is conne
matrix through (the thirst index denotes innut channel, the second - output
where we use channel impulse concept $p_{0}=\sqrt{2 i \sqrt{p_{\alpha} P_{a}}}\left(E-W_{\alpha}\right), ~ E-$ full energy and W
threshold energy of the channel α. Using new notation $d_{d a c}=\left(b_{b a c}-\delta_{c a}\right)$ it can be rewritten
in the following form

$$
f_{\alpha a}=-\frac{1}{2 i \sqrt{p_{\alpha} p_{a}}}\left(d_{\alpha a \alpha}+\frac{c_{\alpha a}}{E-E_{R \alpha}+i \Gamma / 2}\right) .
$$

This quantity is related to the scattering cross section through the well known formul
from scitey
Trom scattering theory (it is integrated through angular variables)

We also assume, that the matrix D could, in general, be imaginary $d_{d \alpha}=d^{\circ}$
while matrix C is supposed to be real in this work. The resulting formula reads
\square
where m_{a} is a reduced mass in the initial channel.
Substitution matrix C is unitary and supposed to be non degenerate, i.e. it's rang is
equal to 1 . Together with time-inverse symmetry it leads to some important properties
(see ref [4]):
E.

The first one is called substitution factorization. $\Gamma_{a}=\left.\psi_{\alpha}\right|^{2}$ is called partial gamma
resonance for channel a. Some valuable for further conclusions could be summarized:

- Fano formula predicts for each resonance that it will appear in all opened
- saltering channels
- All this resonnances will have the same width, but different amplitudes and Fano-
- S-matrix and its substitutions matrix are symmetrical

References

 Horäek, and W. Domcke, Phys. Rev. Lett. 94, 223003 (2005).
[4]. J.R. Taylor. Scattering Theory: the Quantum Theory of

```
[4]. J.R. Taylor. Scattering Theory: the Quantum Theory of Nonrelativistic Collisions,
```


Acknowledgement

How is it works? For one of $\mathrm{J}=25$ resonances

$$
e^{-}+H_{2}^{(0)} \rightarrow e^{-}+H_{2}^{(1)}
$$

Results

	E_{R}^{1}, eV	$\sum c_{\text {cii }}^{2}$	E_{R}^{D}, eV	$\sum c_{\text {Di }}^{2}$	Γ, eV	lifetime, $\mu \mathrm{s}$	γ_{1}^{2}, a.u.	γ_{2}^{2}, a.u.	γ_{D}^{2}, a.u.	$\sum \gamma_{i}^{2}$, a.u.	Γ, a.u.
J26R1	0.2412429698	$0.3531 \mathrm{e}-16$	0.0054318396	0.4352e-34	$2.5435 \mathrm{e}-9$	0.25913	$0.7903 \mathrm{e}-10$		$0.9740 \mathrm{e}-28$	0.7903e-10	0.9335-10
J25R1	0.3986248137	0.1239e-13			6.0524--8	0.01089	0.9622e-9	$0.1250 \mathrm{e}-8$		0.22300-8	$0.2221 \mathrm{e}-8$
J25R2	0.4246432987	0.1143e-12	0.0063074168	$0.6603 \mathrm{e}-27$	2.0499e-7	0.00322	0.2725e-8	0.4809e-8	$0.1550 \mathrm{e}-22$	0.7533e-8	$0.7523 \mathrm{e}-8$
J27R1	0.0824920456	$0.2122 \mathrm{e}-15$	0.0277020456	0.7926-12	0.3119e-6	0.00211	$0.3168 \mathrm{e}-11$	$0.1183 \mathrm{e}-7$	-	$0.1185 \mathrm{e}-7$	$0.1145 \mathrm{e}-7$
J26R2	0.2595030236	0.5670e-13	0.0236914072	0.2658-10	1.8037e-6	0.00037	$0.1462 \mathrm{e}-9$		$0.6849 \mathrm{e}-7$	$0.6861 \mathrm{e}-7$	$0.6620 \mathrm{e}-$
J25R3	4385668903	$0.2140 \mathrm{e}-11$	2882	0.1372e-9	$4.2533 \mathrm{e}-6$	0.00015	$0.2375 \mathrm{e}-8$	4694	0.1523e-6	$0.1593 \mathrm{e}-6$	

Conclusions

- we analysed the shapes of peaks in cross sections for vibrational excitation and dissociative attachment to rotationally excited molecules,
- in particular we found partial decay widths for the metastable H_{2}^{-}states to $\mathrm{H}^{-H^{-}}$and various $\mathrm{H}_{2}^{v}+e^{-}$channels,
- and we determined the cross sections for the creation of the ions in both $\mathrm{H}^{-} \mathrm{H}^{-}$and $\mathrm{H}_{2}+\mathrm{e}^{-}$collisions,
- since the parameters for different processes are not independent, the analysis can also serve as the cross check among calcullations of cross sections for various processes.

