

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

July 2005

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

 $e^- + H_2 \rightarrow H_2^- \rightarrow e^- + H_2$ $H^{-} + H \rightarrow H_{2}^{-} \rightarrow H^{-} + H$ $e^{-} + H_2(v) \rightarrow H_2^{-} \rightarrow e^{-} + H_2(v')$ (VE) $e^- + H_2 \rightarrow H_2^- \rightarrow H^- + H_2$ (DA) $H^- + H \rightarrow H_2^- \rightarrow e^- + H_2$ (AD)

Theory

States -summary

Experiments

Final notes

Coauthors

M. Čížek, J. Horáček, W. Domcke, J. Phys. B 31 (1998) 2571

R. Golser, H. Gnaser, W. Kutschera, A. Priller, P. Steier, A. Wallner,M. Čížek, J. Horáček and W. Domcke: *Phys. Rev. Lett.* 94 (2005) 223003

M. Čížek, J. Horáček, W. Domcke, to be published

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

I. Introduction

- Resonances in AD cross sections
- Interpretation in terms of potential energy curves
- Long lived states not accessible in AD/DA process

Theory

States -summary

Experiments

Final notes

M. Čížek, J. Horáček, W. Domcke, J. Phys. B 31 (1998) 2571

Figure 2. The total $H + H^-$ associative-detachment cross section (chain curve) and its partial-wave components (full curves), l = 30, 29, ... (from the right). Results of the local approximation are given by broken curves.

Theory

States -summary

Experiments

Final notes

Resonances in AD cross section

Page 6

M. Čížek, J. Horáček, W. Domcke, J. Phys. B 31 (1998) 2571

Interpretation in terms of adiabatic H+H⁻ potential curve

Interpretation in terms of adiabatic H+H⁻ potential curve

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

II. Brief Outline of Theory

- Nonlocal resonance model
- Diabatic /Adiabatic state potential
- Details of calculation of metastablestate-parameters

Theory

States -summary

Experiments

Final notes

Nonlocal resonance model

• Theory as reviewed by

W. Domcke 1991, Phys. Rep. 208, 97.

• Model obtained from ab initio calculation using projection-operator techniques:

Berman, Mündel, Domcke 1985, Phys. Rev. A 31, 641.

• Long range H+H⁻ interaction adjusted in

Čížek, Horáček, Domcke 1998, J. Phys. B 31, 2571.

→ Model applicable to all low-energy resonant processes: AD, DA, VE and elastic e⁻+H₂, H+H⁻

Theory

States -summary

Experiments

Final notes

Nonlocal resonance model – basic idea

• Electronic basis at fixed R is defined discrete state $\phi_d(R,r)$ continuum $\phi_s(R,r)$ • Complete wavefunction is expanded $\Psi(\mathbf{R},\mathbf{r}) = \Psi(\mathbf{R})\phi_d(R,r) + \int d\varepsilon \,\psi_\varepsilon(R)\phi_\varepsilon(R,r)$ • Continuum part is eliminated (+BO approx.) $\frac{1}{2\mu}\frac{\partial^2}{\partial R^2} + \frac{J(J+1)}{2\mu R^2} + V_d(R) + \hat{F}(E) - E \psi_d(R) = 0$ $\left\langle R \left| \hat{F}(E) \right| R' \right\rangle = \int d\varepsilon V_{d\varepsilon}(R) \left[E - \varepsilon - T_N \right] \left(V_0(R) + i0 \right]^{-1} V_{d\varepsilon}^*(R') \right)$

Theory

States -summary

Experiments

Final notes

Potential energy curves

Theory

States -summary

Experiments

Final notes

Effect of molecular rotation $J(J+1)/2\mu R^2$

Theory States

-summary

Experiments

Final notes

Resonance parameters calculation

- 1. Calculation of states $|\Psi_r\rangle$ and energies E_r in $V_a(R)$
- 2. Calculation of VE cross section close to E_r
- 3. Determination of state energy and width using least squares fit to Fano formula:

$$\sigma(E) = \sigma_a \frac{(q+\varepsilon)^2}{1+\varepsilon^2} + \sigma_b, \qquad \varepsilon \equiv \frac{E-E_{res}}{\frac{1}{2}\Gamma_{res}}$$

Alternative method

Projection-formulation starting from $|\psi_r\rangle$ as discrete state interacting with H+H⁻ and H₂+e⁻ continua

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

III. Metastable States

- Examples of VE cross sections
- Summary: energies and lifetimes
- Nonlocal character of the decay

Theory

States -summary

Experiments

Final notes

Elastic cross section for $e^- + H_2(\underline{J=21}, v=2)$

Theory

States -summary

Experiments

Final notes

Energy and width for J=21

Theory

States -summary

Experiments

Final notes

Elastic cross section for $e^- + H_2(\underline{J=25}, v=1)$

Energy and width for J=25 Introduction Theory 0.0 States -summary $\Gamma_0 = 6.0 \times 10^{-8} \text{eV}$ Experiments $\Gamma_1 = 2.1 \times 10^{-7} eV$ Final notes $\Gamma_2 = 4.2 \times 10^{-6} eV$ -0.5 20 5 10 15

Decay widths H_2^- - summary

Introduction

Theory

States -summary

Experiments

Final notes

Decay widths D_2^- - summary

Introduction

Theory

States -summary

Experiments

Final notes

Theory

States -summary

Experiments

Final notes

Nonlocal character of the width

Parameters of the states for J=23

V	LCP: E_{res}	Fano: E_{res}	LCP: Γ_{res}	Fano: Γ_{res}
0	-0.075362	-0.075294	1.662×10-5	6.020×10-6
1	-0.037674	-0.037587	9.168×10-5	3.912×10-5
2	-0.011331	-0.011244	2.174×10-4	9.611×10-5
3	0.005578	0.005701	2.861×10-4	1.227×10-4
4	0.015078	0.015055	2.414×10-4	1.007×10-4

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

IV. Experiments

- Experimental evidence 1970 1985
- Xuefeng Jang
- Recent experiments in Wien

Theory

States -summary

Experiments

Final notes

Previous experimental evidence

• Hurley 1974 – observation of H_2^- from low-energy arc source.

00

Aberth *et al.* 1975 – observation of HD⁻, D₂⁻ from (τ > 10µs).
Bae *et al.* 1984 – existence of D⁻ not confirmed in

.....

• Bae *et al.* 1984 – existence of D_2^- not confirmed in two-step experiment designed to produce metastable quartet state $(\tau < 2 \times 10^{-11} \text{s}).$

• Wang et al. 2003 – observed signature of H_2^- in signal from discharge plasma.

Xuefeng Yang

Theory

States -summary

Experiments

Final notes

New experiments

R. Golser, H. Gnaser, W. Kutschera, A. Priller, P. Steier, A. Wallner, M. Čížek, J. Horáček and W. Domcke: *Phys. Rev. Lett.* 94 (2005) 223003

- Anions are created by sputtering of TiH_2 and TiD_2 targets by Cs⁺ ions (impact energy of 5 keV, 0.5 mA)
- Products are mass preselected and stripped of electrons
- Further accelerated (~MeV), mass analyzed and their energy is measured

Unambiguous detection of H₂⁻ and D₂⁻ with lifetimes of at least µs order

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

V. Conclusions

July 2005

1.

Theory

States -summary

Experiments

Final notes

Conclusions

- Long lived states have been found in nonlocal resonance model for $H_2 + e^-$. The states can be understood as orbiting $H + H^$ protected by potential barriers from both autoionisation and dissociation. Energies are all within 0.1eV from DA threshold. Widths vary $10^{-10} - 10^{-2} \text{ eV}$
- 2. LCP model gives accurate positions of the resonances but only order of magnitude estimate for the lifetimes.

3.

- Introduction
- Theory
- States -summary
- Experiments
- Final notes

Conclusions

- The long lived states are difficult to create in "two-body" collisions – the cross sections are as high as 100\AA^2 , but the resonant peak is very narrow. "Three body" collisions like H⁻+H₂ or sputtering are probably much more efficient also due to high angular momentum needed.
- 4. Further experimental evidence (lifetimes, energies, ...) is needed to establish that the states seen in experiments are really of this nature.

Theory

States -summary

Experiments

Final notes

Narrow resonances in electron collisions with H₂ Martin Čížek

Charles University Prague

Acknowledgements Jiří Horáček, Wolfgang Domcke, Xuefeng Yang Czech National Grant: GAČR 202/03/D112 Contact

E-mail: cizek@mbox.troja.mff.cuni.cz *WWW:* http://utf.mff.cuni.cz/~cizek/

PHYSICAL REVIEW A

VOLUME 47, NUMBER 2

FEBRUARY 1993

Time-dependent wave-packet description of dissociative electron attachment

P. L. Gertitschke and W. Domcke

Institute of Physical and Theoretical Chemistry, Technical University of Munich, D-8046 Garching, Germany (Received 4 August 1992)

Chemical Physics Letters 285 (1998) 114-120

LEIIENS

Potential energy surfaces of excited states of H₂⁻

A.M. Mebel ", S.H. Lin ", L.A. Pinnaduwage b

^a Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10764. Taiwan, ROC

^b Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6122, USA

Received 23 October 1997; in final form 25 December 1997

