NARROW RESONANCES IN DISSOCIATIVE ELECTRON ATTACHMENT AND VIBRATIONAL EXCITATION IN H_2

Martin Čížek

Institute of Theoretical Physics, Charles University Prague, V Holešovičkách 2, 180 00 Praha, Czech Republic.

 H_2^- is the most fundamental and simple molecular anion imaginable. It has long been believed to be a very short-lived, with the lifetime of the order of fempto-seconds. However, it is established as an important transient species responsible for high inelastic cross sections in electron-H₂ and in H⁻+H scattering (see for example a recent review [1] and references therein).

Recently we noticed [1] that narrow shape resonances found in H⁻+H cross sections [2] have its counterpart also in electron H₂ scattering. Subsequent analysis has shown [3], that the highly rotating H₂⁻ molecule can support states with the life-time of the order of microseconds. Preliminary values of the parameters for these rotationally-stabilised states are shown in Table 1.

H_2^- resonances			D_2^- resonances		
J	$E_{\rm res}$	au	J	$E_{\rm res}$	au
21	-136	$2.4 \mathrm{\ ps}$	31	-118	0.13 ns
22	-105	12 ps	32	-97	$0.70~\mathrm{ns}$
23	-75	0.11 ns	33	-76	6 ns
24	-47	$0.9 \ \mathrm{ns}$	34	-55	39 ns
25	-20	12 ns	35	-35	$0.51~\mu{\rm s}$
26	5	$0.52~\mu{ m s}$	36	-16	$5.7~\mu { m s}$
27	28	2 ns	37	2	$14 \ \mu s$
			38	19	$7.2~\mu { m s}$
			39	34	$41 \mathrm{\ ps}$

Tab. 1. Parameters of the lowest longlived resonance for each rotational quantum number J. Energies (relative to H^-+H dissociation threshold) are given in meV. The existence of the molecular hydrogen anions has also been confirmed experimentally [4] by producing these species by sputtering of TiH₂ and TiD₂ targets with Cs⁺ ions. The H₂⁻ were identified by subsequent accelerator mass spectrometry.

In this progress report I will review the most recent theoretical work within the framework of nonlocal resonance theory [5] on the properties of these states. I will also try to analyse possible paths for creation and destruction of the states in gas phase.

References

- J. Horáček, M. Čížek, K. Houfek,
 P. Kolorenč, W. Domcke, Phys. Rev. A, **70**, 052712 (2004).
- [2] M. Čížek, J. Horáček, W. Domcke, J. Phys. B **31**, 2571 (1998).
- [3] M. Cížek, J. Horáček, W. Domcke, To be published.
- [4] R. Golser, H. Gnaser, W. Kutschera, A. Priller, P. Steier, A. Wallner, M. Čížek, J. Horáček, W. Domcke, Phys. Rev. Lett. submitted.
- [5] W. Domcke, Phys. Rep. **208**, 97 (1991).