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The currents and the potentials in the transistor are thus approximately
connected with one another through Eqs.(11.104) and (11.105). The para-
meters Iy and £, which is a small number, thus characterize its behaviour in
a circuit. The remarkable phenomenon is that small changes in W, or in I
produce large changes in I; or I, = (1 + £)1I.: the transistor is an amplifier.
Moreover, we get a lineer amplification of the current, since I is proportional
to I, with an amplification ratio 1/£. Finally, it can also operate as a gate,
since I, varies, according to (11.104), abruptly with V},, which enables us to
control the current I, ~ I. by means of the base potential.

Many other devices based upon the p-n junction are used in electronics.
Depending on the potential V' applied between n and p, the thickness of the
charged region varies. We have seen that the conductivity is weaker in that
region where the free-carrier density is reduced. One can therefore operate
upon a current flowing in one of the semiconductors along the junction by
simply controlling V. This idea gives the principle of the field effect transistor
which is a device where the resistance along the junction is governed by a
transverse voltage between n and p (Prob.18). The most often used type is the
MOSFET - from Metal Oxide Semiconductor Field Effect Transistor; a layer
of oxide (dielectric) and a layer of metal, put on one of the semiconductors of
the junction, together with it form a condenser which provides the controlling
voltage.

We may also mention the variable-capacitance diode, or varactor, used, for
instance, to control the frequency of a radio receiver. Here also the potential
V applied to the p-n junction changes the way it is charged and thus controls
its capacity.

Let us finally remark that the semiconductor properties described here are not
limited to the perfect crystals which we have considered. It is true that the simpli-
fications produced by the geometry, the existence of a quasi-momentum and Bloch
waves, do not exist for amorphous substances; however, the analysis of the tight
binding theory shows that the electron structure of an amorphous substance retains
a certain memory of the discrete nature of the levels of its atoms. In particular,
the single-clectron density of states retains a shape which is similar to that of an
insulator: there is no longer a forbidden band, but it is replaced by a region which
contains few levels and this plays an analogous réle. The manufacture of badly crys-
tallized or amorphous semiconductors is relatively cheap: for this reason the use of
amorphous silicon is likely to develop rapidly, for applications where a completely
forbidden band is not required.

11.4 Phonons

So far we have firstly studied the properties of solids which are connected
with the average positions of the atomic nuclei. After that we considered their
electronic properties, and there now remains for us to investigate the role of
the nuclear displacements. Motions with relatively large amplitudes do not
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occur until the solid melts (Probs.8 and 10). Otherwise, the nuclei in the solid
state move, in general, only slightly from their equilibrium positions and the
harmonic approximation is already sufficient for describing their vibrations.
These vibrations are responsible for the heat capacity of the solid. However,
it is essential to treat them quanturn mechanically. This fact was realized
in 1907 by A. Einstein (Exerc.11d) even though quantum mechanics of the
simplest systems (Bohr's atom model of 1913, the de Broglie relations of
1926, or the Schridinger equation of 1926) had not been worked out at that
time. A major step in the quantum theory of solid vibrations was the work
by Petrus Debye (Maastricht 1884-Ithaca, NY 1966) who in 1912 gave a
quantitative explanation of the specific heats and in 1914 introduced the
concept of phonons, applying it to heat conduction in insulators.

11.4.1 Lattice Vibrations

As we mentioned in §11.1.1, the last stage in the Born-Oppenheimer method
(§8.4.1) consists in treating the eigenvalue W({R,}) of Eq.(11.7) as an in-
teraction potential for the nuclei in the effective Schridinger equation (8.40).
Eliminating the electron degrees of freedom leads thus to an effective Hamil-
tonian,

Hy, = T, + W{R,)), (11.106)

where the coordinates R, of each nucleus n, which so far had been considered
to be parameters, are replaced by operators. It is difficult, if not impossible,
to calculate the potential W({R,}) explicitly, as this would require that
we had solved the electronic problem (11.7) not only when the nuclei are
fixed to their equilibrium positions in the lattice as in §11.3, but also when
they are displaced from those positions. However, it will be sufficient to be
aware of two essential properties of W. Firstly, W({R,}) is a minimum when
the nuclei occupy their average positions R, which form the lattice; as the
nuclei do not move far from these positions, one can expand W around that
minimum. Secondly, the periodicity of the lattice implies that W is invariant
under displacements of the crystal group, such as translations, rotations,
symmetries, and their combinations.

The energy W defined by Eq.(11.7) depends, in fact, not only on the nuclear
coordinates, but also on the state A of the electrons. Those remain practically frozen
in into their ground state for an insulator, as for a molecule. We have seen that this
is not the case for a metal. To be more rigorous, we must then take for the potential
W{{Rn}) which occurs in {(11.106) the average, at the temperature considered, over
the electron microstates A, of W({Rn}, A) so that this effective potential depends
on T and u. This dependence is, however, weak and can be neglected. Moreover, the
fact that W depends both on the coordinates {Rn} and on the state A generates
an effective interaction between the nuclear and electron degrees of freedom, an
interaction which we shall neglect (§11.4.2).
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For molecules, the search for the eigenstates of the effective nuclear Hamil-
tonian (8.40) consisted of a study of global rotations and of internal motions,
which for the simple molecules considered reduced to vibrations. Among the
various possible motions of the nuclei in a crystal, the global rotations and
translations, which are macroscopic displacements, are not thermally excited:
in contrast to the molecules in a gas which can be rotated by thermal exci-
tation, a crystal retains its fixed orientation and its fixed position in space
when it is heated. Hence, we must only consider from amongst the nuclear
motions those which correspond to vibrations, excluding the global rotations
and translations. We remind ourselves that for a diatomic molecule there
was a single vibrational mode, associated with changes in the interatomic
distance, with an angular frequency w which could be calculated by expand-
ing the potential around its minimum reached at the equilibrium position.
The number of modes of the lattice vibrations is 3N — 6, where N is the
number of nuclei: we have to subtract from the total number of coordinates
the 3 translations and the 3 rotations of the whole system. As &V is large, we
shall in what follows replace 3N — 6 by 3XV.

As in any small vibrations problem, we look for the normal modes of the
vibrations of the crystal nuclei, replacing in (11.106) the potential W({R,})

by its quadratic approzimation around the average values R,,, and then diag-
onalizing the quadratic form in {§R,} = {R,} — {R,.} which we have thus
obtained. To simplify the discussion, let us assume henceforth that we have
only one atom per cell and let its mass be M. The expression

W({R.}) — W({Ra}) (11.107)

is a quadratic form of the 3N variables {§R,}, 1 < n < N. We write the
eigenvalues of the corresponding matrix as —liM wg; they are all positive as we
have a stable equilibrium. Let £, be the eigenvectors, which are linear func-
tions of the displacements {§ R, }; their number is 3N. Finally, the momenta
T4, conjugate to the variables §,, are the corresponding linear combinations
of the nuclear momenta P,,. The effective nuclear Hamiltonian (11.106) can
thus be written m the small vibration approximation as

2

A, = W{R.)) +z 2+ [W((Ra}) - WHRR))]

W({R.}) +Z (—— + ;Mw ) (11.108)

where there are 3N terms in the sum over g. In fact, (11.108) includes 6
terms associated with the translations and rotations of the crystal, for which
wq = 0 since W remains constant under those displacements.

In terms of the normal coordinates £, and their conjugate momenta, the
nuclear small vibration Schrédinger equation can thus be split into a set
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of 3N equations for one-dimensional independent harmonic oscillators with
angular frequencies w,. (Strictly speaking the frequency is ¥ = w/27 but w
itself is often simply called frequency.) The lattice vibrations are quantized;
the energy levels of H, are given by

WHR.}) + Y hu, (‘nq + %) = b+ Y nghwy, (11.109)

and characterized by 3N independent quantum numbersn, =0,1,2,.... The
thermodynamic properties will mainly depend on the frequency spectrum w,
of the various vibrational modes for small w, and we must thus determine it
by explicitly diagonalizing the quadratic form (11.107).

We solve this problem for a one-dimensional model of a crystal, containing
only one kind of atoms which can oscillate around their equilibrium positions
R; = ja. To simplify the calculations we assume that the effective poten-
tial W only includes interactions w between nearest neighbour nuclei. It is
therefore expanded in powers of 6R; = R; — ja as

N-=-1
W = Z w(Rj41 — R;)
=1

N—1 .
= [w(a) +w'(a)(6R;41 — 6R;)

=1
+ %w"(a) (6Rj+1 - 6RJ-)2 4. ],

and the conditions that it is a minimum for R; = ja are w'(a) = 0 and
w'(a) = C > 0. In the harmonic approximation the Hamiltonian (11.106)
thus reduces to

L SO | o

=1

where we have dropped the additive constant W({R,}).

As in band theory (§11.2.2), we wish to take advantage of the invari-
ance group associated with the periodicity of the crystal structure. Since the
nwinber of nuclei, &, ig large, the boundary effects due to the fact that the
crystal is finite must play a negligible réle. We can therefore slightly change
our model and introduce periodic boundary conditions (§ 10.2.1), that is, as-
sume that the crystal ends are joined together. We therefore identify N + 1
with 1 in the last term in (11.110). An important simplification when we
look for the normal modes is now introduced by the fact that (11.110) is
invariant under a lattice translation over a distance a. We use that property
by carrying out the same discrete Fourier transformation as the one which
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enabled us to connect the localized Wannier orbitals to the Bloch waves for
the electrons through (11.35) and (11.36). Through this transformation we
change from the lattice sites j to the wavenumbers k or the quasi-momenta
hk. One should take care to distinguish between these quasi-momenta, which

are associated with the translational invariance of the lattice, and the nuclear
momenta P;. In this way we introduce the normal coordinates

1 T 1 o
—_ SR, e ki §R; = — elkfi 11.111a
m ; 7 3 ‘/}v ; Ek ( )
and their conjugate momenta
1 kR, 1 Ry
T = —— P;e kR . = — i (11.111b
m P "L )
where the indices k& take on the N values
k= m—, -——-< k£ - (11.112)

In terms of these new variables the Hamiltonian (11.110) has the form

AT‘.
H = z | (2kM +C(1 wcoska)fkffk) . (11.113)
k

Although the operators 5 and 7 are not independent and non-Hermitean,

since we have Ek = { ks ﬂ';= = T_pg, they satisfy the same commntation rela-

tions as pairs of conjugated variables, namely [{k, vrk,] = ihépy, & property
which one can check by using their definitions (11.111). The Hamiltonian
(11.112) thus looks, for each value of k # 0, like that of a harmonic oscillator
of frequency

2C fC . 1
— \/M(l—coska) = 2 H’smﬁka'. (11.114)

To achieve its diagonalisation, we introduce, as for the ordinary harmonic
oscillator, the operators

& \/_ (g,,\/—wk+ v,"rLk) (11.115)

and their conjugates, which satisfy the commutation relations

[E;,,Ekf] =0, [Ek,f:i,] = brp’. (11.116)
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Fig.11.19. The frequency spectrum of a one-dimensional lattice
We thus get for the Hamiltonian (11.113)
.ﬁn = 2 hwk(EiEk -4 %) = Z hw, (ﬁk + %), (11.117)

and its eigenvalues follow from those of 7y = ‘é‘;"'é‘k, which are np = 0,1,....
We show in Fig.11.19 the frequency spectrum wy given by (11.114); we bear
in mind that the possible values of k are given by (11.112).

The term with £ = 0 in (11.113) does not contain the operator EO: which
is associated with the global translations §R; = £o/v/N. It does not describe a
vibrational mode, but represents simply the global kinetic energy of the crystal, It
needs only weak pinning forces to prevent the crystal from moving as a whole; if
there were no such forces, the mean square thermal equilibrium velocity would be
of order 1/ kT /m, or 2 x 10 "mslforal g crystal at room temperature.

In three dimensions, for example in the case of a cubic lattice with cell
size a and one atom per cell, each mode occurs as a vibrational wave with the
displacement § R,, of a nucleus situated at the site R, being, as in (11.111a),
proportional to the real or the imaginary part of

eik-R_n

A mode ¢ is characterized by the wavenumbers

27 27 2
ky = My f, kz = M T, (11.118)

for a crystal of size L, where the (integer) values of the m are bounded by

-5 <m< . (11.119)
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Moreover, for each direction of propagation there are 3 vibrational modes,
associated with the displacements of atoms in particular directions, depend-
ing on the direction of the wavevector, and being mutually orthogonal. We
thus recover the 3N modes which we expected from the counting of degrees
of freedom. If the medium were isotropic — were an amorphous solid — one of
the modes would be longitudinal with the atoms vibrating parallel to k and
the other two modes would be #rensverse for symmetry reasons. The same
property holds for a cubic cystal, in the special case when k is parallel either
to the edges or to the diagonals of the cell; however, in general, the direction
of the vibrations of the atoms in an eigenmode is not oriented in a simple
way relative to the wavevector, due to the anisotropy of the crystal.

The mode frequencies are functions of the wavenumber. As the one-dimen-
sional model we have just studied suggests, and as more detailed theories
show, the frequencies wy of the three modes tend linearly to zero when k
decreases. In the isotropic approximation «/k is independent of the direction
of k so that for the longitudinal and the two transverse modes we have

w o~ wk, w ~ uk. (11.120)

Small values of & correspond to macroscopic wavelengths A = 27 /k, and the
lattice vibrations thus propagate the acoustic waves in the solid. The veloc-
ity Vew of the displacement of a wavepacket is just the sound velocity. It is
independent of the frequency when ka « 1, but it may take on three differ-
ent values, depending on the direction of the oscillations of the atoms, and
it may also be not parallel to k. A typical value is 5000 m s~! in metals,
with the longitudinal velocity u; being larger than the transverse velocity
u¢, as compared to the sound velocity of 300 m s—! in air. The mechanisms
for sound propagation m solids and in fluids are quite different. In the first
case, we are dealing with coherent displacements of the atoms in the lattice
over wavelengths which are large compared to the crystal cell size, a micro-
scopic mechanical effect governed by the effective forces W({R,}); in the
second case, we are dealing with the propagation of a pressure oscillation, a

macroscopic thermodynamic effect governed by the hydrodynamic equations
of §14.4.6.

For a solid with an arbitrary crystal structure the wavevectors k of the eigen-
modes are restricted to the Brillouin zone which generalizes (11.119), and they
continue to take on N values, where N is the number of cells in the lattice. If there
are s atoms per cell, the 3Ns vibrational modes split into 3s branches, which gen-
eralize the 3 branches of a simple cubic lattice. Nevertheless, in the limit as k& - 0,
these 35 branches can be classified as 3 so-called “acoustic” branches for which w
decreases linearly with k, and 3s — 3 so-called “optical” branches for which w re-
mains finite. The latter correspond to oscillations for which different kinds of atoms
in the same cell oscillate with opposite phases. On the contrary, for the acoustic
branches all atoms oscillate in phase; the lattice is thus locally very little distorted,
and this is the reason why for those modes the energy fw;, tends to 0 with k.
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The acoustic modes show up directly as mechanical vibrations of solids with
long wavelengths and low frequencies. The optical modes, which hardly propagate,
as their propagation velocity dw/dk tends to 0 with k, play a role in the interaction
between the crystal and electromagnetic radiation, because of the order of magni-
tude of their energy fiwg. For instance, in NaCl, with 2 atoms per cell, apart from
the three acoustic modes, there are three optical modes, two transverse and one
longitudinal, with frequencies which are, respectively, equal to 3.09 x 1013571 and
4.87 x 10" 37! in the k& = 0 limit. Infrared waves which have frequencies of that
order of magnitude interact strongly with these optical modes and this explains
their name. A photon can be transformed into an optical phonon, that is, it can
be absorbed, while exciting lattice vibrations; the conservation of energy fiw and of
momentum hk = fuw/c can here be satisfied, thanks to the large value of the light
velocity c.

The calculation of the eigenfrequencies, starting from the effective interactions
W between the atoms, can be done as in one dimension, using the transformation
(11.111) which will for each k& produce 3s pairs of &, 7 variables. One must thus
eventually diagonalize a 35 x 35 matrix (Exerc.11e).

The masses of the nuclei are sufficiently large that their average displacements in
a solid remain practically always small compared to the cell size (Prob.10). Even at
the melting temperature the mean square displacement rarely exceeds % of the cell
size (Lindemann’s criterion). This justifies an approximation which we have made
implicitly and which consists in neglecting the Pauli principle for the atomic nuclei.
Their fermion or boson nature plays, in general, no réle whatever in their vibrations
— although those are quantized — as the wavefunctions remain localized round each
lattice site. Under those conditions, the symmetrization or antisymmetrization of
the wavefunction of the N indistinguishable nuclei will not change anything. The
indistinguishability only plays a role in solid helium where the nuclei, bosons for
YHe and fermions for 3He, are sufficiently light and sufficently weakly bound that
the states of neighbouring nuclei overlap.

11.4.2 Interpretation of a Mode as a Boson State

Expression (11.109) for the eigenenergies of the Hamiltonian of the lattice
vibrations shows a large similarity with the expression " _e&.n, of the energy
levels of a gas with an arbitrary number of bosons (§10.5.2). It is therefore
natural to talk about the system of quantized lattice vibration modes as being
a gas of particles, the “phonons”, which satisfy Bose-Einstein statistics. We
shall see in §11.4.4 and in § 13.1, where we shall study the quantized oscilla-
tion modes of the electromagnetic field, that this is more than just a simple
analogy, and that the photons and phonons show all the characteristics of
elementary particles. We shall restrict ourselves here to pointing out the cor-
respondence between the two languages describing the same reality, that of
the quantized vibrations and that of the phonons.

Each oscillation mode g corresponds to a single-phonon state, that is, a
plane wave as for a particle in a box (§ 10.2.1). The wavevector k corresponds
to the quasi-momentum p = hk given by the de Broglie relation and, accord-
ing to (11.118) and (11.119), taking on the same values (11.30) and (11.32)
as the quasi-momentum of an electron in the same crystal. Moreover, the vi-
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brational modes are characterized by an index which can take on three values
for crystals with one atom per cell, and which describes the (in the simplest
cases longitudinal or transverse) polarization of the vibrational wave; this in-
dex plays the same réle as an internal quantum number — like the spin — of the
phonon. The energy (11.109) of a vibrational micro-state corresponds, apart
from an additive constant, to that of a system of bosons, (10.16), provided one
associates the frequency w, with the phonon energy £, = hw, and interprets
the quantum number n, of each harmonic oscillator as the occupation number
of the state g. A vibrational micro-state corresponds to a micro-state (10.14)
of Fock space, and a change in the vibrational state is described as the cre-
ation or annihilation of phonons. In the harmonic oscillation approximation
considered here, the phonons de not interact, as is shown by Fq.(11.109) for
the energy. Their total number is not a constant of the motion. As a result
(§10.5.2), their chemical potential is zero.

The phonons, like the conduction electrons and the holes in an insulator,
are a characteristic example of quasi-particles. Instead of describing the crys-
tal lattice and its motion as a system of nuclei, interacting strongly with one
another, we have been led to introduce the phonons, fictitious bosons with
practically no interactions, which enables us to describe the same physical
situation, but much more simply. Even though the quasi-particles have the
same properties as real particles, they are only distantly related to the true
particles which make up the crystal, the electrons and the nuclei. They rep-
resent, in fact, collective aspects. For instance, in an insulator, a hole or a
conduction electron describes how the whole of the electron cloud is changed
when one takes away or adds an electron. The collective nature of phonons
is even more pronounced, as the creation of a phonon amounts to chang-
ing the vibrational state of the system of nuclei; the quasi-momentum fik of
the phonon is related to the wavevector k of this vibrational state, but has
nothing to do with the momenta of the nuclei.

The correspondence between the quantized vibrations of the lattice and bosons
is completed by identifying the operators (11.115), which through (11.117) diag-
onalize the harmonic oscillators associated with each mode, with the annihilation
and creation operators (10.20) of the phonons. The algebra (10.21) and (11.116) of
these operators is, indeed, exactly the same. According to the general properties of
§10.2.3, each observable can be expressed as a function of the operators ¢ and ¢'.
In particular, the displacement of each nucleus occurs as a linear combination of
phonon annihilation and creation operators. For example, for the one-dimensional
crystal model studied in §11.4.1, we find from (11.111) and (11.115) that

— ~ ot
By = 4/ fy Sk F S
6R; = \/3x Zk: N (11.121a)

Similarly, the momentum P; of a nucleus is given by

B = 1/§ﬁ Zk: (IR (ck—ct_k) V][? , (11.121b)
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which is another combination of the annihilation and creation operators. Equations
(11.121) enable us to translate all physical quantities from one representation to

another, for example, to find from the average number of phonons (ELEH = f in
each mode the statistical fluctuations in the position of each nucleus in thermal
equilibrivm.

The existence of anharmonicity is in the phonon language translated into the
addition of extra terms to the Hamiltonian (11.117). For instance, a term with SRY

A s

or with R in the potential W produces, if we use (11.121), terms like '&Il cLz Cky Chy
describing the scattering of two phonons with quasi-momenta k3 and k4 into the
modes ky and ky (with conservation of total quasi-momentum), like ¢, C, Cr, de-
scribing the annihilation of 3 phonons (k3 +k2+k3 = 0), or like ?Ll?;f‘z'é‘ks describing
the transformation of one phonon into two others. Even though they are small, those
terms contribute to the establishment of equilibrium in the phonon gas, where the
number of phonons is not conserved (u = 0). When they are significant, we treat
them using perturbative expansions similar to those used in particle physics; the
phonon language is then eminently suitable.

We have similarly treated the electrons in §11.2 in the approximation where
the nuclei were fixed at their average position. A displacement 6 Ry, of the nuclei
adds to (11.8) a perturbation

2
— Y R (i - Ru) —2 w

Py

in ri — Rn

which can be interpreted, if we take (11.121) into account, as an electron-phonon
interaction describing the scattering of an electron, with the creation or annihilation
of a phonon. This interaction is responsible for numerous physical phenomena, such
as the Joule effect — the transfer of electron energy to the lattice, thus heating it.
It also enables two electrons to exchange a phonon; this gives rise to an effective
attraction between them. This attraction is enhanced by the sudden jump in f(£)
at the Fermi surface, to such an extent that it is possible for two electrons with
energy ¢ép and with opposite momenta and spins to formm a bound pair in spite of
their Coulomb repulsion. The resulting pairs, the so-called Cooper pairs, resemble
bosons and can condense; this is the mechanism for superconductivity in metals at
low temperatures (§12.3.3).

The phonons are a prototype of “Goldstone bosons”, which are quasi-particles,
or particles, associated with a continuous invariance property of the system. Here
we are concerned with the translational invariance which the Hamiltonian satisfies,
but which is spontaneously broken (§9.3.3) at thermal equilibrium where the atoms
occupy well-defined equilibrium positions. An arbitrary translation transforms this
equilibrium state into another equivalent equilibrium state, with the same energy.
Let us assume that we excite a vibrational mode, in the long wavelength limit.
Locally this (non-equilibrium) state is obtained by a translation with an amplitude
which varies slowly in space. We understand thus why the energy of this mode
tends to 0 as k decreases, since for £k = 0 we would have just a global transla-
tion. This property holds generally (Goldstone’s theorem) for any long wavelength
excitation of a system, occurring because a continuous invariance is broken. The
linear behaviour of wy for small & is a specific property of the phonons, but the
existence of 3 acoustic branches, for which the energy vanishes with k, is itself a
mere consequence of the breaking of the translational invariance in the crystal.
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Another example of a Goldstone boson is provided by the elementary excita-
tions, called “magnons™, of a ferromagnetic solid (Exerc.9a). In the Heisenberg
model where the spins o; interact through an effective potential —J(&; - 3,-), the
Hamiltonian is invariant under a rotation of the spins. This continuous invariance
is spontaneously broken in the ground state and, more generally, in any equilibrium
state at a temperature below the Curie temperature (Exerc.9a), as the spins are
in that case all oriented along a privileged direction. A global rotation of the spins
does not change the energy. A magnon, or spin wave, describes an oscillation of
the spins around their equilibrium orientation which propagates from one spin to
another. It is the Goldstone mode associated with the spin rotations, and its energy
vanishes with k. The same concept exists in perticle physics where the ground (or
equilibrium) state is replaced by the vacuum and where an elementary excitation
with momentum p and energy € = /m2ct + p2c? represents a particle with a rest
mass m. The Goldstone bosons have an energy which vanishes with k, so that their
mass is zero. An example is the photon; one can show that this is the Goldstone
boson associated with gauge tnvariance, which is broken because one must choose
a particular gauge to write down the potentials occurring in the Hamiltonian of
charged particles.

11.4.8 Specific Heats of Solids

The statistical mechanics of quantized lattice vibrations can be studied in
either one of the two equivalent descriptions: the canonical partition func-
tion (11.117) for the independent oscillation modes, calculated by using its
factorization (§4.2.5), is the same as the grand canonical partition function
for non-interacting phonons with u = 0, written down in §§ 10.3.1 and 10.5.2.
Thus, the thermodynamic functions associated with the vibrational modes
of the lattice, that is, with the phonon gas in the crystal, are given by the
formulze of § 10.3 with 4 = 0. In particular, apart from an additive constant,
the internal energy (10.42) of the phonons, which is the average of (11.109),
equals

Uph = Zquq = /d&D(E)#, (11.122)

q

where D(¢) is the density of the modes,

Die) = Y, 6(huw, —&). (11.123)

At low temperatures the important modes in the integral in (11.122)
are those with low energies. They have a linear spectrum so that in three
dimensions the mode density (11.123) behaves as £2 for small ¢, since >
introduces an integral [ dk. As a result, if we take Be as the variable in
(11.122), we find an internal energy which is proportional to 7% as T —
0, which means a specific heat proportional to 73. We shall determine its
coefficient m what follows, in (11.129).
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At high temperatures (11.122) reduces to

Upp ~ kT f deD(e) = 3NkT, (11.124)

where 3V is the total number of modes. More exactly, in a solid with several
atoms per cell and NV cells, the 3V acoustic modes contribute to (11.124) while
the optical modes do not contribute, provided kT lies between the maximum
energy of the acoustic modes and the minimum energy of the optical modes.
The specific heat is therefore nearly constant and equal to 3Nk.

The Debye model bridges these results. It is based npon the use of the
isotropic approximation (11.120) for the phonon spectrum, which in the large
volume limit (§ 10.3.3) and for small ¢ gives

D(e) = Z [6(u1p — &) + 26(ugp — €)]

P
2 3

= 3 fdp[&(ulp—€)+26(u¢p—e)]

- 2 (—1-+£)52 11.125
2m2h® \wy  wl /) (11.125)

Nevertheless, D(¢) must vanish when ¢ becomes large as the total number of
modes, 3N, is finite; it must satisfy the normalization condition (11.124). The
Debye approximation, which enables us to avoid the detailed determination
of D(g), consists in extrapolating (11.125) up to a certain maximum value
after which one takes D to vanish. This value kOp is determined by the
normalization condition, which determines the only parameter of the theory,
the Debye temperature of the crystal,

1/3
o _ B 1872 N
P 2 (u;® + 2u;?)

: (11.126)

One can determine it from measurements of the longitudinal and transverse
sound velocities. Typical values are 90 K for Pb, 400 K for Al, and 3000
K for diamond. One can therefore rewrite the mode density (11.125) in the
approximate form

D(e) = % B (k€p — ¢). (11.125')

The resulting internal energy (11.122) equals

ONkT? [9o/T 34,
f (11.127)
0

63 ez — 1’
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Fig. 11.20. The specific heat of some solids

where we have taken z = [¢ as variable. Hence we get for the phonon con-
tribution to the specific heat of the crystal

Cph = (11.128)

dUpn _ 9NKT? /GD/T ate® do
ar 6y J, (e —1)2’

which we show in Fig.11.20. The dashed curve corresponds to the Einstem
model (Exerc.10d).

The experimental results are also shown in Fig.11.20 for a few substances
which have a sufficiently simple crystal structure for the phonon spectrum
to be well represented by the Debye approximation. The agreement with the
theoretical curve is remarkable: the Debye temperatures which produce the
best agreement between theory and experiment are, up to a few %, equal to
those which one evaluates from (11.126), using the sound velocities.

We find, as predicted, the T2 dependence at low temperatures if in (11.128)
we replace the upper integration limit by oo, which for T « Op gives (see
formulae section at the end of the book)

ONEKT? > gle®dx 1274 T3
Con = =g = :
me e [ o = My

(11.129)
Figures 11.20 and 11.21 illustrate that experiments check the T° law very
satisfactorily for most solids, and even with a remarkable accuracy for insu-
lators at low temperatures (solid argon for T < 2 K). A notable exception
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Fig. 11.21. Specific heat of solid argon. The solid line represents the theoretical curve
for &p =92 K

is graphite, the specific heat of which varies rather like 72. This can be ex-
plained by the practically two-dimensional structure of this substance, which
changes the mode density (11.125) and produces a behaviour D(¢) ¢ in-
stead of o £2 in a sufficiently large region. Nevertheless for metals at very
low temperatures the specific heat is dominated by the electron contribution
(11.52) which is linear in T, and which tends to zero less rapidly than the con-
tribution (11.129) from the lattice vibrations. One can distinguish these two
contributions easily by plotting C'/T as function of T2, as the experimental
results for potassium below 0.5 K show (Fig.11.22).

When the temperature increases, the crystal vibrations become more and
more unfrozen and Cpp increases. When T >» ©p, we expect to find the re-
sult of classical statistical mechanics, predicted by the equipartition theorem
(§8.4.2): the number of degrees of freedom is 6V so that Cp, should tend to
3Nk. One can check this result by expanding the integrand in (11.128) in the
vicinity of £ = 0, which yields

\ CT '/m] mol™ K™
3 CIT = 2.08 2
/T =208 +257T .
..--"/.'
| Y
.f.‘._.".
-
/ T2!K2
2L L ! .- | I
0 0.1 0.2 03

Fig. 11.22. Specific heat of metallic potassium



11.4 Phonons 143

2
Con ~ 3NK (1 . ) , (11.130)
The value 3Nk ~ 25 Jmole ! K~ for the specific heat of solids had been ob-
served experimentally for number of them at the beginning of the nineteenth
century (Dulong and Petit law). We see that this concerns solids with a Debye
temperature which is rather low, below room temperature. We also note that
the electron contribution is negligible compared to 3N k: for potassium, an ex-
trapolation to T = 300K of the linear law only gives C¢ ~ 0.6 Jmole * K1,

The Debye approximation thus enables us to connect the specific heats of
solids with a simple structure to their sound velocities. For crystals with a
less simple structure, or in order to obtain a greater accuracy, we must use
(11.122) and (11.123) which connect the thermodynamic properties with the
properties of the wibrations: another example of the unifying power of statis-
tical physics. For many substances one has checked the agreement between
the measured specific heat and its value calculated starting from the w(k)
spectrum, which itself is determined in experiments, for instance, on inelastic
scattering of neutrons or photons by phonons.

11.4.4 Thermal Equilibrium of a Vibrating String

As an introduction to quantum field theory and as an exercise we shall study
a model describing the vibrations of a continuous medium, rather than of a
discrete system of atoms as in § 11.4.1. This will help us to deepen the equiv-
alence which we have established between quantized oscillators and quasi-
particles such as phonons (§11.4.2); the discrete nature of a substance should
not play any role when ka « 1. This will help us also to introduce in §13.1
the photon concept. In fact, the dynamical variables describing the deforma-
tions of a continuous medium constitute a field and the quantization of the
electromagnetic field will follow the same stages as the present quantization
of the deformation field, the eigenmodes of which are mechanical oscillations.

To simplify matters we shall restrict ourselves to a one-dimensional system, that
is, to an elastic string. We assume that this string, which is fixed at its ends, z =0
and ¢ = L, can only be deformed in one, transverse, direction. Moreover, we limit
ourselves to small displacements and we assume that the tension 7 and the linear
mass density ¢ are given. In classical mechanics the displacement (z,t) of the
string at the point x, which is the solution of the equations of motion (11.134) and
which depends on the initial conditions {z, 0) and 8:(z,0)/8t, must be considered
to be a classical field, that is, a contimium of dynamic variables ¢ each of which is
associated with a point ¢ of the string. The oscillation eigenmodes are particular
solutions, forming a base. They are characterized by their wavenumber

k= — m =12, ..., (11.131)



