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Abstract We give a brief description of some compelling connections between
general relativity and thermodynamics through i) the semi-classical tunnelling
method(s) and ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both
approaches it is possible to interpret some quantities in a thermodynamical frame.

1 Introduction

The idea of treating the emission of radiation from black holes as a tunelling pro-
cess across the horizon traces back to the first path-integral derivation by Hartle and
Hawking [1]. As a matter of fact, the null-geodesic method introduced by Kraus,
Parikh and Wilczek [2, 3] and the Hamilton-Jacobi method proposed more recently
by Padmanabhan and collaborators [4] can be considered as semi-classical versions
of the original derivation. On the other hand, the Unruh-DeWitt detector [5, 6] con-
stitutes a field-theoretical approach to the problem, providing a more exact answer
to questions regarding the particle content of the field and its thermal features for
different observers.

2 The tunnelling method(s)

The null-geodesic and the Hamilton-Jacobi methods mentioned above both rely on
the calculation of the classical action S of a particle along a trajectory crossing the
horizon. Since such a trajectory is classically forbidden, the action itself developes
an imaginary contribution which, in the WKB approximation, allows to calculate
the tunnelling probability rate

Giovanni Acquaviva
Department of Physics, University of Trento, Italy, e-mail: acquaviva@science.unitn.it

1

acquaviva@science.unitn.it


2 Giovanni Acquaviva

Γem ≃ exp(−2 ℑS) , (1)

where ℑ stands for imaginary part. The use of Kodama-Hayward theoretical results
[7, 8], which allow to express observables of interest in terms of invariant quantities,
has been a main ingredient.

In [9] this methods has been analysed in detail and the following results have
been proven:

• a solid basis for the covariance of the method has been given;
• formal equivalence of the two aforementioned approaches holds at least in sta-

tionary cases;
• the method provides an invariant and consistent answer in a variety of situations

(higher-dimensional solutions, Taub and Taub-NUT solutions, decay of unstable
particles, emission from cosmological horizons and naked singularities).

The calculation can be summarized in the following steps regarding the Hamilton–
Jacobi approach:

1. assume that the tunnelling particle’s action S satisfies the relativistic Hamilton–
Jacobi equation

gµν ∂µ S∂ν S+m2 = 0 (2)

2. reconstruct the whole action, starting from the symmetries of the problem; the
integration is carried along an oriented, null curve γ with at least one point on
the horizon

S =
∫

γ
dxµ ∂µ S (3)

3. perform a near-horizon approximation and regularize the divergence in the in-
tegral according to Feynman’s prescription: the solution of the integral has in
general a non-vanishing imaginary part.

The result can be given in the general form

Γem = Γabs exp
(
−2π ωH

κH

)
, (4)

where ωH and κH are respectively the invariant energy of the tunnelling particle
and the invariant surface gravity in Hayward’s theory. Through comparison of the
transition rate with the Boltzmann factor, we can identify an invariant temperature

TH =
κH

2π
. (5)

3 Unruh-DeWitt detectors

We consider a conformally flat 4-dimensional metric, a massless scalar field confor-
mally coupled to the metric and a two-level quantum system coupled to the scalar
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field. The idea is to calculate the probability for the absorption of a scalar quantum
and the consequent excitation of the two-level system through the transition rate

dF
dτ

=
1

2π2

∫ ∞

0
cos(E s)

(
1

σ2(τ,s)
+

1
s2

)
ds − 1

2π2

∫ ∞

∆τ

cos(E s)
σ2(τ,s)

, (6)

where E is the energy gap of the detector and s is the duration of the detection (see
[10] for details on the construction of equation (6)). The second integral is the finite-
time contribution, generally an oscillating tail exponentially damped. The bulk of
the information about the transition rate comes from the geodesic distance between
the “switching on” and “switching off” events, evaluated along a fixed trajectory
x(τ)

σ2(τ,s) = a(τ)a(τ − s) [x(τ)− x(τ − s)]2 (7)

whose inverse is proportional to the positive frequency Wightman function. The a(t)
is the conformal factor.

Let’s analyze two simple stationary cases: the Schwarzschild black hole and the
de Sitter cosmology. The detector will be placed on a Kodama trajectory, which
means that it will sit at a fixed distance from the horizon. Both cases can be treated
in the same way, because the function σ2 can be written in general

σ2(s) =−4V
κ2 sinh2

(
κ

2
√

V
s
)

(8)

where κ is the surface gravity and
√

V =
√
−g00. A Wightman function which,

as in (8), is stationary and periodic in imaginary time is called “thermal” because
when Fourier-transformed, it gives a Planckian transition spectrum. In our case,
calculating both the stationary and the finite-time contributions,

dF
dτ

=
1

2π
E

exp
(

2π
√

V E
κ

)
−1

+

+
E

2π2

∞

∑
n=1

ne−nκ∆τ/
√

V

n2 +V E2/κ2

(
κ√
V E

cos(E∆τ)− sin(E∆τ)
)

(9)

4 Conclusions

As regards the tunnelling method, it has been shown that the formalism gives an
invariant answer and allows extensions to more general black hole horizons in vari-
ous dimensions as well as cosmological horizons and naked singularities. Moreover,
the extension to dynamical space-times has been carried out: in this framework the
radiation seems to originate near the local trapping horizon, not the global event
horizon.
The Unruh-DeWitt detector constitutes a more exact approach to the Unruh-Hawking
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effect, relying on a quantum field-theoretical calculation. In stationary cases the re-
sponse function of the detector is shown to be thermal with temperature given by
the surface gravity, just as in the tunnelling approach. The generalization to non-
stationary situations gives rise to problems in the analytical resolution and in gen-
eral, when the background is time-dependent, the thermal interpretation seems lost.
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