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Abstract This contribution reviews the recent discovery of a certain class of –
regular on and outside the horizon – exact hairy black hole solutions in four di-
mensional general relativity. Their construction follows from the integrability of a
cohomogeneity two Weyl rescaling of the Carter-Debever ansatz in the presence of
an arbitrary number of scalar fields with an arbitrary self interaction and an arbitrary
non-minimal coupling to the scalar curvature. Two field equations, independent of
the specific form of the energy momentum tensor, are used to integrate the metric.
The remaining ones fix the form of the scalar field self interaction. The cohomo-
geneity one black holes are described and are shown to encompass all the exact
– regular in the domain of outer communications – uncharged, black holes with a
minimally coupled scalar hair, available in the literature.

1 Introduction and Discussion

The field of exact solutions in gravity, as well as their interpretation, is as old as gen-
eral relativity and the research group at Charles university, and their collaborators,
are well known for their contributions to this subject. Many of them can be found
in the review [1] or the book [2]. From the black hole uniqueness theorems it is
already well known that at least in four dimensions, the asymptotically flat, station-
ary and regular black holes in the electrovacuum case are exhausted, for references
see [3]. Therefore, it is natural to attempt to extend these studies when other matter
fields are included. Indeed, the studies of the minimally coupled scalar field have a
prominent role in the construction of black holes. In the static, asymptotically flat
case, the minimally coupled no-hair conjecture was shown to be true for convex
potentials [4], and, more generally, for potentials satisfying the strong [5] and weak
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energy condition [6] . These studies have their counterpart in Brans-Dicke [7] and
more generally in scalar-tensor theories [8], showing that whenever the scalar field
potential satisfies the weak energy condition in the Einstein frame and the black hole
spacetime is stationary and asymptotically flat it must be Kerr. When the scalar field
satisfies the null energy condition an exact family of spherically symmetric black
hole solutions has been recently constructed [9].

When the cosmological constant is negative exact uncharged AdS4 hairy black
hole solutions have been extensively studied [10, 11, 12, 13, 14]. There is a pre-
cise conjecture on the non-existence of spherically symmetric black holes in AdS
for scalar field potentials that comes from “the right” superpotential [15]. These
solutions are interesting in the light of the AdS/CFT conjecture. In particular, in
four dimensions, and when the scalar field is charged, they define the setting for
the AdS/Condensed matter correspondence [16]. When the cosmological constant
is positive the black holes have also attracted some attention of the community [17].

This article intends to shortly summarize my recent contributions to the subject.
I have followed the idea that stationary and axisymmetric spacetimes that have a
hidden symmetry, in the form of a conformal Killing tensor, should allow for a
complete integrability of some form of a non-trivial self interaction of the scalar
field. Therefore, in [14] I explicitly showed that, starting with the ansatz that con-
tains all the vacuum Petrov type D solutions, it is possible to integrate the system in
the presence of a non-minimally coupled scalar field or a non-linear sigma model.
It is very interesting to note that the self interaction of the scalar field is completely
fixed by the form of the metric ansatz and, therefore, the scalar field potential is
an output of the analysis. While these results are presented in the Einstein frame,
their extension to a Scalar-Tensor theories in some Jordan frame or F(R) theory is
straightforward.

The scalar field potential turns out to be contained as special case of all the ex-
act hairy (A)dS black holes available in the literature. The static solutions are black
holes continuously connected with the Schwarzschild (A)dS solution, and can be
generalized to include non-minimally coupled gauge fields [18]. In asymptotically
AdS black holes, with cosmological constant Λ = −3/l2, the scalar field mass is
m2 =−2/l2, which is above the Breitenlohner-Freedman bound, m2 =−9/4l2, en-
suring the perturbative stability of these black holes. This mass is the one of the
scalar fields of the U(1)4 truncation of gauged N = 8 supergravity [19] and the
solutions can be embedded in this supergravity theory.

The content of the article is as follows. In the second section the general integra-
bility of the ansatz with two Killing vectors is reviewed and in the third section the
static case and its special limits are presented.

2 The integrable system with two Killing vectors

The conventions are given by the action principle
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S(g,ϕ) =
∫

d4x
√
−g
[

R
2κ

− 1
2

gµν ∂µ ϕ∂ν ϕ − ξ
12

ϕ 2R−V (ϕ)
]
, (1)

where κ = 8πG. We are interested in studying a cohomogeneity two Weyl rescaling
of the Carter-Debever [20, 21], also studied by Plebański [22]:

ds2 = S(q, p)
(1+ p2q2

Y (q)
dq2 +

1+ p2q2

X(p)
d p2 − Y (q)

1+ p2q2

(
p2dτ +dσ

)2

+
X(p)

1+ p2q2

(
dτ −q2dσ

)2
)

(2)

When S(q, p) = p−2, this metric contains the Kerr-Newman hole with a cos-
mological constant. Letting S(q, p) free, this metric can be integrated in vacuum,
and with the same Maxwell field like in the Kerr-Newman case; the Plebański-
Demiański spacetime arises [23].

The observation made in [14], is that for stationary and axisymmetric scalar
fields, ϕ = ϕ(q, p), the energy momentum tensor of a scalar field

Tµν = ∂µ ϕ∂ν ϕ − 1
2

gµν (∂ϕ)2 −gµνV (ϕ) , (3)

is such that components T τ
σ = 0 = T σ

τ and, therefore, the Einstein equations, Rµ
ν −

1
2 δ µ

ν R = κT µ
ν , imply Rτ

σ = 0 = Rσ
τ . These two equations are enough to complete

the metric functions; the solution is

X(p) = C0 +C2 p2 +C4 p4 +C1 p−ν+2 +C3B3 pν+2, (4)
Y (q) = C4 −C2q2 +C0q4 +C3C1q−ν+2 +B3qν+2, (5)

S(q, p) =C
pν−1qν−1

(C3 pν +qν)2 . (6)

This solution reduces to the Plebański-Demiański spacetime when ν =±1 . The
remaining Einstein equations fix the scalar field and the scalar field potential to
a very precise form. The same process can be done when the scalar field is non-
minimally coupled to gravity and, more generally, when a non-linear sigma model
is the source of the Einstein equations.

To extract more physical information let us study the cohomogeneity one black
holes.
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3 The static black holes

The static limit of the previous configuration is

ds2 = Ω(r)(−F(r)dt2 +
dr2

F(r)
+dΣ 2), (7)

Ω(r) =
ν2ην−1rν−1

(rν −ην)2 , ϕ = l−1
ν ln(rη−1), (8)

F(r) =
r2−ν η−ν (rν −ην)2 k

ν2

+

(
1

(ν2 −4)
−
(

1+
ην r−ν

ν −2
− η−ν rν

ν +2

)
r2

η2ν2

)
α − Λ

3
, (9)

where lν =
(

2κ
ν2−1

) 1
2

and dΣ 2 is the line element of a surface of constant curvature
k . η is the only integration constant of the black hole. The solution and theory are
invariant under the transformation ν →−ν .

The scalar field potential is

V (ϕ) =
Λ
(
ν2 −4

)
6κν2

(
ν −1
ν +2

e−(ν+1)ϕ lν +
ν +1
ν −2

e(ν−1)ϕ lν +4
ν2 −1
ν2 −4

e−ϕ lν

)
+

α
ν2κ

(
ν −1
ν +2

sinh((1+ν)ϕ lν )+
ν +1
ν −2

sinh((1−ν)ϕ lν )+4
ν2 −1
ν2 −4

sinh(ϕ lν )
)
. (10)

It is easy to see from the form of the metric, and without any reference to the
details of the solution itself, that it is possible to introduce Eddington-Finkelstein
coordinates u∓ = t ±

∫ dr
F(r) , which allow to cover either the black hole (u−) or the

white hole (u+). The asymptotically flat solution has a single horizon from which it
follows that the Penrose diagram is the same as for the Schwarzschild black hole.

The energy momentum of the scalar field, in a comoving tetrad, has the form
T ab = diag(ρ, p1, p2, p2) and, in the static regions of the spacetime, defined by
F(r)> 0, satisfies the null energy condition

ρ + p2 = 0, ρ + p1 =

(
ν2 −1

)
(rν −ην)2 F(r)

2rν2ην−1rν > 0. (11)

In the hairless limit, ν = 1, the change of coordinates r = η − 1
y brings the hairy

solution (7) – (9) to the familiar Schwarzschild–de Sitter black hole

ds2 =−(k− 2M
y

− Λ
3

y2)dt2 +
dy2

k− 2M
y − Λ

3 y2
+ y2dΣ . (12)
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where M = 3η2k+α
6η3 .

The parameterization of the black holes has been chosen such that the leading
order at r = η is either Minkowski, anti–de Sitter or de Sitter in the following form

ds2
r=η =

1
(r−η)2

(
−
(

k(r−η)2 +
Λ
3

)
dt2 +

dr2

(k(r−η)2 + Λ
3 )

+dΣ 2

)
. (13)

The easiest way to see that there is always an α such that F(r) has a simple zero is
to see that the equation F(r+) = 0 is linear in α

0 =
r2−ν
+ η−ν (rν

+−ην)2 k
ν2

+

(
1

(ν2 −4)
−
(

1+
ην r−ν

+

ν −2
−

η−ν rν
+

ν +2

)
r2
+

η2ν2

)
α − Λ

3
, (14)

therefore it is possible to solve this equation for α for any value of the other param-
eters.

As a final remark it is instructive to compare the behaviour of these solutions in
AdS, with the asymptotic form given in [24] . When the backreaction is ignored,
a scalar field with mass m minimally coupled to an AdS background has the well
known fall–off ϕ ∼ a

ρ∆− + b
ρ∆+ where ∆± are the roots of ∆ (3−∆) +m2l2 = 0.

When − 9
4l2 ≤ m2 < − 5

4l2 , both branches are normalizable but the a branch con-
tributes to the surface charges of the system. The form of the potential makes it
possible to see that the mass is m2 = − 2

l2 . When the mass is exactly ∆+
∆−

= 2 then
the scalar field develops a logarithmic branch that, again, has a non-trivial contri-
bution to the charges at infinity. However this logarithmic branch only appears if
the expansion of the potential contains a cubic term. Indeed, it is possible to verify
that with the change of coordinates r = η exp( 1

ηρ − 1
2ρ2η2 − ν2−9

24η3ρ3 ), the scalar field
takes the form

ϕ = l−1
ν

(
1

ηρ
− 1

2ρ2η2 − ν2 −9
24η3ρ3

)
, (15)

and the departure from the AdS metric, defined by

ds2 =−(k+ ρ2

l2 )dt2 +
(

k+ ρ2

l2

)−1
dρ2 +ρ2dΣ , is

hmn =
ν2 −4
6η3ρ

gmn +O(ρ−2), (16)

htt =
Λ(ν2 −4)

18η3ρ
+

k (ν −1)+6Mν2ην

3ηρ
+O(ρ−2), (17)
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hρρ =
3
(
ν2 −1

)
4η2Λρ4 +O(ρ−5), (18)

where gmn are the components along dΣ . This coincides exactly with (6.2) of [24]
with ∆− = ∆ = 1, a = 1

η lν
and b =− 1

2η2lν
. The case ν2 = 4 is peculiar in the sense

that the deformation of the metric at infinity is subleading as for generic ν .
The cases with ν = 2 and ν = ∞ are special, and can be treated by a simple

limiting procedure.

3.1 The case ν = 2

Indeed, the potential (10) has a smooth limit when ν = 2,which is given by

V (ϕ) =
α

16κ
(sinh(3ϕ l2)+9sinh(ϕ l2)−12ϕ l2 cosh(ϕ l2))

+
Λ

2κν2

(
eϕ l2 + e−ϕ l2

)
. (19)

where l2 =
√

2κ
3 . The metric functions also have a smooth limit

Ω(r) =
4ηr

(r2 −η2)2 , (20)

F(r) =
η−2

(
r2 −η2

)2

4
k+

(
3
16

+

(
r

2η

)4

−
(

r
2η

)2

+
1
4

ln(
r
η
)

)
α − Λ

3
. (21)

The potential (10) has been considered in the context of the existence of topological
AdS black holes in [11]. When α = 0 and k =−1 this is the MTZ black hole [10].

3.2 The case ν = ∞

The ν = ∞ case is a bit more subtle. First, it is necessary to rescale the area of the
unit sphere as dΣ −→ ν−2dΣ which implies that the metric function F rescales
accordingly

F(r) = r2−ν η−ν (rν −ην)
2 k

+

(
1

(ν2 −4)
−
(

1+
ην r−ν

ν −2
− η−ν rν

ν +2

)
r2

η2ν2

)
α, (22)
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and the solution is now

ds2 = Ω(r)(−F(r)dt2 +
dr2

F(r)
+ν−2dΣ 2), (23)

Ω(r) =
ν2ην−1rν−1

(rν −ην)2 , ϕ = l−1
ν ln(rη−1). (24)

Let us introduce the changes of coordinates r = ρ
1
ν , t = τ

ν , and the reparameter-

ization η → η
1
ν , α −→ ν3α . The ν = ∞ limit is then easily seen to give

ds2 = Ω∞(ρ)(−F∞(ρ)dτ2 +
dρ2

F∞(ρ)
+dΣ 2), (25)

Ω∞(ρ) =
ηρ

(ρ −η)2 , ϕ =
1√
2κ

ln(ρη−1), (26)

F∞(ρ) = ρ−1η−1 (ρ −η)2 k+
(

2ln(
η
ρ
)+

ρ
η
− η

ρ

)
α − Λ

3
, (27)

V∞(ϕ) =
2α
κ

(2ϕ lP +ϕ lP cosh(ϕ lP)−3sinh(ϕ lP))+
Λ
3
(4+2cosh(lPϕ)) , (28)

where lP =
√

2κ is proportional to the Planck length. The potential (28) plus the
corresponding limit of the part proportional to Λ of (10) was considered in the
context of de Sitter hairy black holes compatible with inflation in [17].
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