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Abstract A natural question in general relativity is to find initial data for the Ein-
stein equations whose past evolution is regular and whose future evolution contains
a black hole. In [1] initial data of this kind is constructed for the spherically symmet-
ric Einstein-Vlasov system. One consequence of the result is that there exists a class
of initial data for which the ratio of the Hawking mass m̊ = m̊(r) and the area radius
r is arbitrarily small everywhere, such that a black hole forms in the evolution. This
result is analogous to the result [2] for a scalar field. Another consequence is that
there exist black hole initial data such that the solutions exist for all Schwarzschild
time t ∈ (−∞,∞). In the present article we review the results in [1].

1 Introduction

In the study of gravitational collapse it is important to identify physically admissible
initial data, and it is natural to require that the past evolution of the data is regular.
However, in numerical relativity it is often the case that the given initial data, which
form black holes to the future, also result in a singular past due to topological rea-
sons. Moreover, most of the existing mathematical results which ensure a regular
past also ensure a regular future which rules out the study of the formation of black
holes. The exceptions being the classical result for dust [3], and the recent result [4]
for a scalar field. In the latter work, which in part rests on the studies [5, 2], initial
data whose past evolution is regular and whose future evolution forms a black hole
is constructed. Neither dust nor a scalar field are realistic matter models in the sense
that they are used by astrophysicists. Dust is a perfect fluid where the pressure is
assumed to be zero, and a scalar field is merely a toy model. Thus, there is so far
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no example of a solution to the Einstein-matter system for a realistic matter model
possessing a regular past and a singular future.

Here we consider Vlasov matter, or collisionless matter, governed by the Vlasov
equation, cf. [6] for an introduction. Although this is a simple matter model, it has
rich dynamics and many features that are desirable of a realistic matter model. For
instance, there is a large number of stable and unstable spherically symmetric and
axially symmetric stationary solutions, there is numerical support that time periodic
solutions exist, it behaves as Type I matter in critical collapse, and it is used by
astrophysicists, cf. [7]. The following theorem is the main result in [1].

Theorem 1. There exists a class of initial data J for the spherically symmetric
Einstein-Vlasov system with the property that black holes form in the future time
direction and in the past time direction spacetime is causally geodesically complete.

The following corollary is analogous to a result in [2] for a scalar field. Let m̊ be the
initial Hawking mass. We then have

Corollary 1. Given ε > 0, there exists a class Jr of initial data for the spherically
symmetric Einstein-Vlasov system which satisfy

sup
r

m̊(r)
r

≤ ε,

for which black holes form in the evolution.

Another consequence of our result is that there exists a class of black hole initial data
such that the corresponding solutions exist for all Schwarzschild time t ∈ (−∞,∞),
cf. Corollary 2 in [1].

Theorem 1 relies in part on the previous studies [8, 9, 10]. In [9] global existence
in a maximal time gauge is shown for a particular class of initial data where the
particles are moving rapidly outwards. One of the restrictions imposed on the initial
data is that

sup
r

2m̊(r)
r

< k0, (1)

where the constant k0 is roughly 1/10. The situation considered in [10] is in a sense
the reverse since the initial data is such that the particles move rapidly inwards
and the quantity supr 2m̊/r is required to be close to one. The main result of [10]
is that data of this kind guarantee the formation of black holes in the evolution.
Particles that move inward in the future time direction move outward in the past
time direction. It is thus natural to try to combine these two results with the goal
of constructing solutions with a regular past and a singular future. The conditions
on the ratio 2m̊/r are clearly very different in [9] compared to [10], and moreover,
the Cauchy hypersurfaces are different since a maximal time gauge and a polar time
gauge are imposed in the respective cases. The reason a maximal time gauge is used
in [9] is due to the difficulties related to the so called pointwise terms which appear
in the characteristic equations in a polar time gauge. In [8] the problem of global
existence for general initial data is investigated under conditional assumptions on



Black Hole Formation from a Complete Past for the Einstein-Vlasov System 3

the solutions. The analysis along characteristics is applied to a modified quantity for
which the problem with the pointwise terms do not appear.

The proof of Theorem 1 is obtained by combining the strategies in [8] and [9],
and a sketch of proof is given in section 3. The spherically symmetric Einstein-
Vlasov system is introduced in section 2.

2 The Einstein-Vlasov system

For an introduction to the Einstein-Vlasov system and kinetic theory we refer to
[6, 11]. In Schwarzschild coordinates the spherically symmetric metric takes the
form

ds2 =−e2µ(t,r)dt2 + e2λ (t,r)dr2 + r2(dθ 2 + sin2 θdφ2). (1)

The Einstein equations read

e−2λ (2rλr −1)+1 = 8πr2ρ, (2)

e−2λ (2rµr +1)−1 = 8πr2 p, (3)

λt =−4πreλ+µ j, (4)

e−2λ (µrr +(µr −λr)(µr +
1
r
))− e−2µ(λtt +λt(λt −µt)) = 8π pT . (5)

The indices t and r denote partial derivatives. The Vlasov equation for the density
function f = f (t,r,w,L) is given by

∂t f + eµ−λ w
E

∂r f − (λtw+ eµ−λ µrE − eµ−λ L
r3E

)∂w f = 0, (6)

where
E = E(r,w,L) =

√
1+w2 +L/r2. (7)

Here w ∈ (−∞,∞) can be thought of as the radial component of the momentum vari-
ables, and L ∈ [0,∞) is the square of the angular momentum. The matter quantities
are defined by

ρ(t,r) =
π
r2

∫ ∞

−∞

∫ ∞

0
E f (t,r,w,L) dwdL, (8)

p(t,r) =
π
r2

∫ ∞

−∞

∫ ∞

0

w2

E
f (t,r,w,L) dwdL, (9)

j(t,r) =
π
r2

∫ ∞

−∞

∫ ∞

0
w f (t,r,w,L) dwdL, (10)

pT (t,r) =
π

2r4

∫ ∞

−∞

∫ ∞

0

L
E

f (t,r,w,L) dwdL. (11)
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Here ρ, p, j and pT are the energy density, the radial pressure, the current and the
tangential pressure respectively. The following boundary conditions are imposed to
ensure asymptotic flatness

lim
r→∞

λ (t,r) = lim
r→∞

µ(t,r) = 0, (12)

and if a regular centre is required we set

λ (t,0) = 0. (13)

As initial data it is sufficient to prescribe a density function f̊ = f̊ (r,w,L)≥ 0 such
that ∫ r

0
4πη2ρ̊ (η)dη <

r
2
. (14)

Here we denote by ρ̊ the energy density induced by the initial distribution function
f̊ . This condition ensures that no trapped surfaces are present initially. We now
introduce a couple of notations. From equation (3) and (12) we have

µ(t,r) =−
∫ ∞

r

m(t,η)

η2 e2λ −
∫ ∞

r
4πη pe2λ dη =: µ̂ + µ̌ . (15)

Moreover, the Hawking mass m = m(t,r) is given by

m(t,r) = 4π
∫ r

0
η2ρ(t,η)dη . (16)

Finally, we note that in [12, 6] local existence theorems are proved for compact and
non-compact initial data respectively and it will be used below that solutions exist
on some time interval [0,T [, which is assumed to be maximal.

3 Global existence for outgoing matter

The aim in this section is to consider initial data of the type constructed in [10],
which guarantee the formation of black holes to the future, and show that global
existence holds to the past for such data. We remark that the time direction is re-
versed in this section so that the particles move outwards initially and the global
existence to the past refers to the time interval [0,∞[. Furthermore, in [1] two dif-
ferent classes of initial data are given adapted to the two corollaries of Theorem 1
mentioned above. Here we only consider one of these classes of data.

Let 0 < r′0 < r0 < r1 be given and put M = r1/2. Let f̊s be data of a steady state
supported in [r′0,r0] and let

Min :=
∫ r0

r′0
4πr2ρ̊(r)dr. (17)
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The results in [13, 14] guarantee that there are such steady states and moreover that

sup
0≤r≤r0

2m̊(r)
r

<
8
9
,

and in particular 2Min/r0 < 8/9 so that M > Min. Let Mout := M−Min. Let R1 > r1
be such that

R1 − r1 <
r1 − r0

6
, (18)

and define
R0 :=

1
2
(r1 +R1).

Let L+ > 0 and let W∗ > 0 be such that

|W∗| ≥ 1+
√

L+

R0
. (19)

Let W− > 0 satisfy

|W−|e
−5M

2R0(1−
2M
R0

)
(1− 2M

R0
)3/2 ≥ 3|W∗|. (20)

We can now specify the initial data. Let f̊ = f̊s + f̊m be initial data of ADM mass
M, and such that

supp f̊m ⊂ [R0,R1]× [W−,∞[×[0,L+] ,

and ∫ ∞

r0

4πr2ρ̊(r)dr =
∫ R1

R0

4πr2ρ̊m(r)dr = Mout. (21)

In view of [10] the initial data f̊ guarantee the formation of black holes. Hence,
Theorem 1 follows from the following global existence theorem.

Theorem 2. Assume that r′0,r0,Min,M,L+,R0,R1,W∗,W− and f̊ are given as above,
and consider a solution f of the system (2)-(5), launched by f̊ , on its maximal exis-
tence interval [0,T [. Then T = ∞, and there is a κ∗ > 0 such that

supp fm(t)⊂ [R0 + |t κ∗|,∞[×[W∗,∞[×[0,L+], (22)

and the resulting spacetime is future causally geodesically complete.

Sketch of proof: We focus here on the main idea of the proof and refer to [1] for the
complete argument. It is shown in [1] that f , λ and µr remain time independent for
r ≤ r0 and therefore the present arguments only concern the outer matter given by
fm. The steady state is needed to guarantee the formation of black holes.

Let [0, t1[ be the maximal time interval such that for t ∈ [0, t1[ and (r,w,L) ∈
supp fm(t), w > W∗. By continuity t1 > 0. Suppose that t1 ∈]0,T [, then we must
have w = W∗ for some w ∈ supp fm(t1), but we will show that w > W∗ for all
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w ∈ supp fm(t1). Thus t1 = T and since the matter stays strictly away from r = 0
it follows that T = ∞ in view of [8].

Consider a characteristic (R(s),W (s),L) with R(0) ∈ [R0,R1] and define

G(s) := E(R(s),W (s),L)+W (s).

Below we suppress the arguments but it should be clear that R = R(s), µr =
µr(s,R(s)) etc. The main idea of the proof is to consider the evolution of the quantity

G(t)eµ̂(t,R(t))(1−2M/R(t))

along the characteristic (R(s),W (s),L). The following inequality is then obtained in
[1],

d
ds

(
Geµ̂(1− 2M

R
)
)
≥−

[
λt

W
E

+µreµ−λ − µ̂t

]
Geµ̂(1− 2M

R
). (23)

This implies that

G(t1)eµ̂(t1,R(t1))(1− 2M
R(t1)

) ≥ e−
∫ t1

0 [λt (s,R(s))W
E +µ̌r(s,R(s))e(µ−λ )(s,R(s))−µ̂t (s,R(s))]ds

×G(0)eµ̂(0,R(0))(1− 2M
R(0)

). (24)

Let γ be the curve
γ := {(t,r) : 0 ≤ t ≤ t1, r = R(t)}.

The time integral in (24) can be written as∫
γ

e(−µ+λ )(t,r)λt(t,r)dr+
(

e(µ−λ )(t,r)µ̌r(t,r)− µ̂t(t,r)
)

dt. (25)

An application of Green’s formula in the plane to this curve integral, making crucial
use of the second order Einstein equation (5) and the Vlasov equation, leads in [1]
to the inequality∫

γ
e−µ+λ λt dr+(eµ−λ µ̌r − µ̂t)ds ≤ 5M

2R0(1− 2M
R0

)
.

Inserting this into the main inequality (24) we get

G(t1)eµ̂(t1,R(t1))(1− 2M
R(t1)

)≥ e
−5M

2R0(1−
2M
R0

) G(0)eµ̂(0,R(0))(1− 2M
R(0)

).

Noticing that µ̂ is monotone in r and nonpositive, and that R(0)≥ R0, we find that
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G(t1) ≥ e
−5M

2R0(1−
2M
R0

) G(0)eµ̂(0,R0)(1− 2M
R0

)

≥ e
−5M

2R0(1−
2M
R0

) G(0)
√

R0 −2M
R0

(1− 2M
R0

). (26)

Here we made use of the estimate

µ̂(t,R0)≥−
∫ ∞

R0

M dη
η2(1− 2M

η )
=

1
2

log
(

1− 2M
R0

)
. (27)

We have that G(0) > W (0) ≥ W−, and in view of (19) we also have 3W (t) ≥ G(t)
on [0, t1]. We now use the condition (20) and obtain

3W (t1)≥ G(t1)> 3W∗.

Thus W (t1) > W∗, and necessarily we have t1 = T . As was pointed out in the be-
ginning of the proof, since matter stays strictly away from the centre of symmetry,
it follows that T = ∞, cf. [8]. For the remaining statements in the theorem we refer
to [1].

□
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8 Håkan Andréasson
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