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Abstract The very early universe provides the best arena we currently have to test
quantum gravity theories. The success of the inflationary paradigm in accounting
for the observed inhomogeneities in the cosmic microwave background already il-
lustrates this point to a certain extent because the paradigm is based on quantum field
theory on the curved cosmological space-times. However, this analysis excludes the
Planck era because the background space-time satisfies Einstein’s equations all the
way back to the big bang singularity. Using techniques from loop quantum gravity,
the paradigm has now been extended to a self-consistent theory from the Planck
regime to the onset of inflation, covering some 11 orders of magnitude in curvature.
In addition, for a narrow window of initial conditions, there are departures from
the standard paradigm, with novel effects, such as a modification of the consistency
relation involving the scalar and tensor power spectra and a new source for non-
Gaussianities. The genesis of the large scale structure of the universe can be traced
back to quantum gravity fluctuations in the Planck regime. This report provides a
bird’s eye view of these developments for the general relativity community.

1 Introduction

In this conference, Professor Bicak and others described the ideas that Einstein de-
veloped in Prague during 1911-12. From then until 1915 he worked largely by him-
self on the grand problem of extending the reach of special relativity to encompass
gravity. Finally, in November 1915, he provided us with the finished theory. For
almost a century, the relativity community has been engaged in understanding the
astonishingly rich physics the theory contains, testing it ever more accurately, and
applying it to greater and greater domains of astrophysics and cosmology. The the-
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ory has so many marvelous features. Amazingly, the field equations turned out to
provide an elliptic-hyperbolic system with a well-posed initial value problem. Af-
ter many decades, we realized that the total mass of an isolated system is a well
defined geometric invariant and, furthermore, positive if the local energy density
of matter is positive. The theory naturally admits cosmological solutions in which
the universe is expanding, just as the observations tell us. It admits black hole solu-
tions that serve as engines for the most energetic phenomena seen in the universe.
None of these fascinating features that we now regard as fundamental consequences
were part of Einstein’s motivation during his quest which he described as “one of
the most exciting and exacting times of my life” [1]. He essentially handed to us
the finished product on a platter. We have been engaged in uncovering the numer-
ous hidden treasures it contains by working out the philosophical, mathematical,
physical, astronomical and cosmological consequences of the new paradigm.

But we know that the theory is incomplete. Indeed, it exhibits its own fundamen-
tal limitations through singularities where space-time ends and general relativistic
physics comes to a halt. We also understand that this occurs because general relativ-
ity ignores quantum physics. Perhaps the most outstanding example is the prediction
of the big bang. If we go back in time, much before we reach the singularity, mat-
ter densities exceed the nuclear density, ∼ 1014 −1015gms/cc, where we definitely
know that quantum properties of matter dominate. Since gravity couples to matter,
the conceptual paradigm of general relativity becomes inadequate. If we go fur-
ther back in time, general relativity presents us with an epoch in which densities
reach ∼ 1094gms/cc. This is the Planck scale and now physics of general relativ-
ity becomes inadequate not only conceptually but also in practice. In this regime
we expect gross departures from Einstein’s theory. Just as it is totally inadequate to
use Newtonian mechanics to explore physics near the horizon of a solar mass black
hole, it is incorrect to trust general relativity once the matter density and space-time
curvature enter the Planck regime. Thus, big bang is a prediction of general rela-
tivity in a domain in which it is simply invalid. Normally physicists do not advertise
such predictions of theories. But unfortunately they often seem to make an excep-
tion for the big bang. One hears statements like ‘the cosmic microwave background
(CMB) is a fingerprint of the big bang’. But in the standard scenario, CMB refers to
a time some 380,000 years after the putative big bang. Existence or even the detailed
features of CMB have no bearing on whether the big bang with infinite matter den-
sity and curvature ever occurred. Indeed, as we will see, loop quantum cosmology
(LQC) has no big bang singularity and yet reproduces these features. What about
inflation? In the standard scenario, it is supposed to have commenced ‘only’ 107

Planck seconds after the big bang. Does its success not imply that there was a big
bang? It does not because the matter density and curvature at the onset of inflation
are only 10−11 −10−12 times the Planck scale. Indeed, this is why one can use Ein-
stein’s equations and quantum field theory (QFT) on Friedmann, Lemaı̂tre, Robert-
son, Walker (FLRW) solutions in the analysis of inflation. Inflationary physics by
itself cannot say what really happened in the Planck regime and, again, as we will
see, is compatible with the LQC prediction that there was no big bang singularity.
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Thus, to know what really happened in the Planck regime and go beyond the
singularities predicted by general relativity, we need a viable quantum theory of
gravity. Since the search for this theory has been ongoing for decades, justifiably,
there is sometimes a sentiment of pessimism in the general relativity circles. In
my view, this is largely because one judges progress using the criterion of general
relativity. In a masterful stroke, Einstein gave us the final theory and we have been
happily engaged in investigating its content. It seems disappointing that this has not
happened with quantum gravity. But progress of physical theories has more often
mimicked the development of quantum theory rather than general relativity. More
than a century has passed since Planck’s discovery that launched the quantum. Yet,
the theory is incomplete. We do not have a satisfactory grasp of the foundational
issues, often called the ‘measurement problem’, nor do we have a single example
of an interacting QFT in 4 dimensions. A far cry from what Einstein offered us in
1915! Yet, no one would deny that quantum theory has been extremely successful;
indeed, much more so than general relativity.

Thus, while it is tempting to wait for another masterful stroke like Einstein’s to
deliver us a finished quantum gravity theory, it is more appropriate to draw lessons
from quantum theory. There, progress occurred by focussing not on the ‘final, fin-
ished’ theory, but on concrete physical problems where quantum effects were im-
portant. It would be more fruitful to follow this path in quantum gravity. Indeed,
even though we are far from a complete theory, advances can occur by focusing on
specific physical problems and challenges.

Over the last several years, research in loop quantum gravity (LQG) has been
driven by this general philosophy. In addition to seeking a completion of the general
program based on connection variables, spin networks and spin foams, more and
more effort is now focused on specific physical problems where quantum gravity
effects are expected to be important. The idea behind this research is to first trun-
cate general relativity (with matter) to sectors tailored to specific physical problems,
and then pass to quantum theory using the background independent methods based
on the specific quantum geometry that underlies LQG. This strategy of focusing on
specific problems of quantum gravity also distinguishes LQG from string theory in
terms of their main trust in the last few years. In string theory, the focus has shifted
to using the well-understood parts of gravity to explore other areas of physics —use
of the AdS/CFT hypothesis to understand the strong coupling regime of QCD, to
gain new insights into hydrodynamics and tackle the strong coupling problems in
mathematical physics to better understand condensed matter systems such as high
temperature super-conductivity. The LQG community, on the other hand, has con-
tinued to tackle the long standing problems of quantum gravity per se —absence of
a space-time in the background, the problem of time, fate of cosmological singu-
larities in the quantum theory, quantum geometry of horizons, and derivation of the
graviton propagator in a background independent setting.

The goal of my talk was to report the advances in the cosmology of the very early
universe that have resulted from a continued application of the truncation strategy
in LQG. Of course, both the talk and this report can only provide a bird’s eye view
of these developments. The results I reported are based largely on joint work with
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Alejandro Corichi, Tomasz Pawlowski and Parampreet Singh [2, 3, 4, 5, 6, 7] on
the singularity resolution in cosmology; with David Sloan [8, 9] on effective LQC
dynamics tailored to inflation, with Wojciech Kaminski and Jerzy Lewandowski
[10] on QFT on quantum space-times; and especially with Ivan Agullo and William
Nelson on extension of the cosmological perturbation theory to the Planck regime
and its application to inflation [11, 12, 13]. Therefore, there is a large overlap with
the material covered in these original references. Finally, by now there are well
over a 1000 papers on LQC which include several investigations of inflationary
dynamics. What I can cover constitutes only a very small fraction of what is known.
For reviews on results until about a year ago, see, e.g. [14, 15].

2 Setting the Stage

Perhaps the most significant reason behind the rapid and spectacular success of
quantum theory, especially in its early stage, is the fact that there was already a
significant accumulation of relevant experimental data, and further experiments to
weed out ideas could be performed on an ongoing basis. Unfortunately this is not the
case for quantum gravity simply because theory has raced far ahead of technology.
Indeed, even in the classical regime, we still lack detailed tests of general relativity
in the strong field regime!

Currently, the early universe offers by far the best arena to test various ideas on
quantum gravity. Most scenarios assume that the early universe is well described
by a FLRW solution to Einstein’s equations with suitable matter, together with first
order perturbations. The background is treated classically, as in general relativity,
and the perturbations are described by quantum fields. Thus, the main theoreti-
cal ingredient in the analysis are: cosmological perturbation theory and QFT on
FLRW space-times. It is fair to say that among the current scenarios, the inflation-
ary paradigm has emerged as the leading candidate. In addition to the common
assumption described above, this scenario posits:

• Sometime in its early history, the universe underwent a phase of rapid expansion.
This was driven by the slow roll of a scalar field in a suitable potential causing
the Hubble parameter to be nearly constant.

• Fourier modes of the quantum fields representing perturbations were initially
in a specific state, called the Bunch-Davies (BD) vacuum, for a certain set of
co-moving wave numbers (ko,2000ko) where the physical wave length of the
mode ko equals the radius RLS of the observable universe at the surface of last
scattering. 1

1 Strictly speaking, the BD vacuum refers to deSitter space; it is the unique ‘regular’ state which is
invariant under the full deSitter isometry group. During slow roll, the background FLRW geometry
is only approximately deSitter whence there is some ambiguity in what one means by the BD
vacuum. One typically assumes that all the relevant modes are in the BD state (tailored to) a few
e-foldings before the mode ko leaves the Hubble horizon. Throughout this report, by BD vacuum I
mean this state.
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• Soon after any mode exits the Hubble radius, its quantum fluctuation can be re-
garded as a classical perturbation and evolved via linearized Einstein’s equations.

One then evolves the perturbations from the onset of the slow roll till the end
of inflation using QFT on FLRW space-times and calculates the power spectrum
(see, e.g., [16, 17, 18, 19, 20]). When combined with standard techniques from
astrophysics to further evolve the results to the surface of last scattering, one finds
that they are in excellent agreement with the inhomogeneities seen in the CMB.
Supercomputer simulations have shown that these inhomogeneities serve as seeds
for the large scale structure in the universe. Thus, in a precise sense, the origin of the
qualitative features of the observed large scale structure can be traced back to the
fluctuations in the quantum vacuum at the onset of inflation. This is both intriguing
and very impressive.

Over the years, the inflationary paradigm has witnessed criticisms from the rel-
ativity community, most eloquently expressed by Roger Penrose (see, e.g., [21]).
However, these criticisms refer to the motivations that were originally used by the
proponents, rather than to the methodology underlying its success in accounting for
the CMB inhomogeneities. There are plenty of examples in fundamental physics
where the original motivations turned out not to be justifiable but the idea was highly
successful. I share the view that, while the basic assumptions, listed above, have not
been justified from first principles, the success of the inflationary paradigm with
CMB measurements is impressive because one ‘gets much more out than what one
puts in’.

In spite of this success, however, the inflationary scenario is conceptually incom-
plete in several respects. (For a cosmology perspective on these limitations see e.g.
[22].) In particular, as Borde, Guth and Vilenkin [23] showed, inflationary space-
times inherit the big-bang singularity in spite of the fact that the inflaton violates
the standard energy conditions used in the original singularity theorems [24]. As we
discussed in section 1, this occurs because one continues to use general relativity
even in the Planck regime in which it is simply not applicable. One expects new
physics to play a dominant role in this regime, thereby resolving the singularity and
significantly changing the very early history of the universe. One is therefore led to
ask: Will inflation arise naturally in the resulting deeper theory? Or, more modestly,
can one at least obtain a consistent quantum gravity extension of this scenario?

The open-ended nature of the inflationary paradigm has three facets. First, there
are issues whose origin lies in particle physics. Where does the inflaton come from?
How does potential arise? Is there a single inflaton or many? If many, what are the
interactions between them? Since the required mass of the inflaton is very high,
above 1012Gev, the fact that we have not seen it at CERN does not mean it cannot
exist. But in the inflationary scenario this is the only matter field in the early universe
and particles of the standard model are supposed to be created during ‘reheating’ at
the end of inflation when the inflaton is expected to roll back and forth around its
minimum. However, how this happens is not at all well-understood. What are the
admissible interactions between the inflaton and the standard model particles which
causes this decay? Does the decay produce the correct abundance of the standard
model particles? These questions with origin in particle physics are wide open.
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The second issue is the quantum to classical transition referred to in the last as-
sumption of standard inflation. In practice one calculates the expectation values of
perturbations and the two point function at the end of inflation and assumes one can
replace the actual quantum state of perturbations with a Gaussian statistical distri-
bution of classical perturbations with the mean and variance given by the quantum
expectation value and the 2-point function. As a calculational devise this strategy
works very well. However, what happens physically? While this issue has drawn
attention, we do not yet have a clear consensus on the actual, detailed physics that
is being approximated in the last assumption.

The third set of issues have their origin in quantum gravity. In the standard in-
flationary scenario, one specifies initial conditions at the onset of inflation and then
evolves the quantum perturbations. As a practical strategy, something like this is
unavoidable within general relativity. Ideally one would like to specify the ini-
tial conditions at ‘the beginning’, but one simply cannot do this because the big
bang is singular. Furthermore, since the curvature at the onset of inflation is some
10−11 − 10−12 times the Planck scale, by starting calculations there, one bypasses
the issue of the correct Planck scale physics. But this is just an astute stopgap mea-
sure. Given any candidate quantum gravity theory, one can and has to ask whether
one can do better. Can one meaningfully specify initial conditions in the Planck
regime? In a viable quantum gravity theory, this should be possible because there
would be no singularity and the Planck scale physics would be well-controlled. If
so, in the systematic evolution from there, does a slow roll phase compatible with
the 7 year WMAP data [25] arise generically or is an enormous fine tuning needed?
One could argue that it is acceptable to use fining tuning because, after all, the initial
state is very spatial. If so, can one provide physical principles that select this spe-
cial state? In the standard inflationary scenario, if we evolve the modes of interest
back in time, they become trans-Planckian. Is there a QFT on quantum cosmologi-
cal space-times needed to adequately handle physics at that stage? Can one arrive
at the BD vacuum (at the onset of the WMAP slow roll) staring from the initial
conditions at the Planck scale?

In this report, I will not address the first two sets of issues. Rather, the focus will
be on the incompleteness related to the third set, i.e., on quantum gravity. System-
atic advances within LQC over the past six years have provided a viable extension
of the inflationary scenario all the way to the Planck regime. This extension en-
ables us to answer in detail most of the specific questions posed above. To arrive at
a coherent extension, LQC had to develop a conceptual framework, mathematical
tools and high precision numerical simulations because the issues are so diverse:
The meaning of time in the Planck regime; the nature of quantum geometry in the
cosmological context; QFT on quantum cosmological space-times; renormalization
and regularization of composite operators needed to compute stress energy and back
reaction; and, relation between theory and the WMAP data.

A consistent theoretical framework to deal with cosmological perturbations on
quantum FLRW space-times now exists [12]. Starting with ‘natural’ initial condi-
tions in the Planck regime, one can evolve the quantum perturbations on quantum
FLRW backgrounds and study in detail the pre-inflationary dynamics [11, 13]. De-
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tailed numerical simulations have shown that the predictions are in agreement with
the power spectrum and the spectral index reported in the 7 year WMAP data. How-
ever, there is also a small window in the parameter space where the initial state at
the onset of inflation differs sufficiently from the BD vacuum assumed in standard
inflation to give rise to new effects. These are the prototype observable signatures of
pre-inflationary dynamics. In this sense, LQC offers the possibility of extending the
reach of cosmological observations to the deep Planck regime of the early universe.

3 Why Pre-inflationary Dynamics Matters

Fig. 1 Schematic time evolution of the Hubble radius (red solid line on the right in each panel)
and of wave lengths of three modes seen in the CMB (three solid blue lines in each panel). Credits:
W. Nelson. Left Panel: General relativity. The modes of interest have wave lengths less than the
Hubble radius 1/HGR all the way from the big bang (tsing) until after the onset of slow roll. Right
Panel: LQC. The Hubble radius diverges at the big bounce (tBoun), decreases rapidly to reach its
minimum in the deep Planck era and then increases monotonically. Because of this, modes seen in
the CMB can have wave lengths larger than the Hubble radius 1/HLQC in the very early universe.
Detailed analysis shows that what really matters is the curvature radius Rcurv shown schematically
by the dashed red line rather than the Hubble radius 1/HLQC. But again the modes can exit the
curvature radius in the Planck regime and, if they do, they are excited during the pre-inflationary
evolution. They will not be in the BD vacuum at the onset of slow roll inflation.

It is often claimed that pre-inflationary dynamics will not change the observable
predictions of the standard inflationary scenario. Indeed, this belief is invoked to
justify why one starts the analysis just before the onset of the slow roll. The be-
lief stems from the following argument, sketched in the left panel of Fig. 1. If one
evolves the modes that are seen in the CMB back in time starting from the onset
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of slow roll, their physical wave lengths λphy continue to remain within the Hubble
radius 1/HGR all the way to the big bang. Therefore, one argues, they would not
experience curvature and their dynamics would be trivial all the way from the big
bang to the onset of inflation; because they are not ‘exited’, all these modes would
be in the BD vacuum at the onset of inflation. However, this argument is flawed on
two accounts. First, if one examines the equation governing the evolution of these
modes, one finds that what matters is the curvature radius Rcurv =

√
6/R determined

by the Ricci scalar R, and not the Hubble radius. The two scales are equivalent only
during slow roll on which much of the intuition in inflation is based. However, in
general they are quite different from one another. Thus we should compare λphy
with Rcurv in the pre-inflationary epoch. The second and more important point is
that the pre-inflationary evolution should not be computed using general relativity,
as is done in the argument given above. One has to use an appropriate quantum grav-
ity theory since the two evolutions are expected to be very different in the Planck
epoch. Then modes that are seen in the CMB could well have λphy ≳ Rcurv in the
pre-inflationary phase. If this happens, these modes would be excited and the quan-
tum state at the onset of the slow roll could be quite different from the BD vacuum.
Indeed, the difference could well be so large that the amplitude of the power spec-
trum and the spectral index are incompatible with WMAP observations. In this case,
that particular quantum gravity scenario would be ruled out. On the other hand, the
differences could be more subtle: the new power spectrum for scalar modes could
be compatible with observations but there may be departures from the standard pre-
dictions that involve tensor modes or higher order correlation functions of scalar
modes, changing the standard conclusions on non-Gaussianities [26, 27, 28, 29]. In
this case, the quantum gravity theory would have interesting predictions for future
observational missions. Thus, pre-inflationary dynamics can provide an avenue to
confront quantum gravity theories with observations.

These are not just abstract possibilities. The right panel of Fig. 1 shows schemat-
ically the situation in LQC. (For the precise behavior obtained from numerical sim-
ulations, see Fig. 1 in [13].) The wave lengths of some of the observable modes can
exit the curvature radius during pre-inflationary dynamics, whence there are depar-
tures from the standard predictions (which turn out to be of the second type in the
discussion above).

So far we have focused only on why a common argument suggesting that pre-
inflationary dynamics cannot have observational consequences is fallacious. At a
deeper level, pre-inflationary dynamics matters because of a much more general
reason: It is important to know if inflationary paradigm is part of a conceptually
coherent framework encompassing the quantum gravity regime. Can one trust the
standard scenario in spite of the fact that the modes it focuses on become trans-
Planckian in the pre-inflationary epoch? Does one have to artificially fine-tune initial
conditions in the Planck regime to arrive at the BD vacuum? Do initial conditions for
the background in the Planck regime naturally give rise to solutions that encounter
the desired inflationary phase some time in the future evolution? To investigate any
one of these issues, one needs a reliable theory for pre-inflationary dynamics and
also good control on its predictions.
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4 The LQG Strategy

LQG offers an attractive framework to investigate pre-inflationary dynamics be-
cause its underlying quantum geometry becomes important at the Planck scale and
leads to the resolution of singularities in a variety of cosmological models. In par-
ticular the following cosmologies have been investigated in detail: the k=0 and k=1
FLRW models are discussed in [30, 31, 2, 3, 4, 5, 32, 33, 34]; a non-zero cosmo-
logical constant is included in [35, 36, 6]; anisotropic are discussed via Bianchi
I, II and IX models in [37, 38, 39, 40]; and the inhomogeneous Gowdy models,
which have been analyzed in detail in classical general relativity, have been studied
in [41, 42, 43, 44, 45]. In all cases, the big bang singularity is resolved and replaced
by quantum bounces. It is therefore natural to use LQC as the point of departure for
extending the cosmological perturbation theory.

In the standard perturbation theory, one begins with linearized solutions of Ein-
stein’s equations on a FLRW background. Unfortunately, we cannot mimic this pro-
cedure because in LQG we do not yet have the analog of full Einstein’s equations
that one would have to perturb. But one can adopt the truncation strategy discussed
in section 1. Thus, one starts with a truncation ΓTrun of the phase space Γ of general
relativity, tailored to the linear perturbations off FLRW backgrounds. Furthermore
since we are interested in the issue of whether the inflationary framework admits
a quantum gravity extension, the matter source will be just a scalar field ϕ with
the simplest, i.e. quadratic, potential V (ϕ) = (1/2)m2ϕ 2. Thus, ΓTrun is given by
ΓTrun = Γo ×Γ1 where Γo is the 4-dimensional FLRW phase space, with the scale
factor a and the homogeneous inflaton ϕ as configuration variables, and Γ1 is the
phase space of gauge invariant first order perturbations consisting of a scalar mode
and two tensor modes. Since the background fields are homogeneous, it is simplest
to assume that the perturbations are purely inhomogeneous. Thus, regarded as a
sub-manifold of the full phase space Γ , ΓTrun is the normal bundle over Γo.

As usual, for perturbations one can freely pass between real space and momen-
tum space using Fourier transforms of fields in co-moving coordinates. For pre-
inflationary dynamics, we work with the Mukhanov-Sasaki variables, denoted by
Qk, because they are well-defined all the way from the bounce to the onset of slow
roll. 2 We denote the two tensor modes collectively by Tk. This structure is the same
as that used in standard inflation [46].

New features appear in the next step: In the passage to quantum theory, we work
with the combined system, i.e., with all of ΓTrun. Therefore, we are naturally led a
theory in which not only the perturbations but even the background geometry is
quantum. Rather than having quantum fields Q̂ and T̂ propagating on a classical
FLRW space-time, they now propagate on a quantum FLRW geometry.

2 The curvature perturbations Rk fail to be well-defined at the ‘turning point’ where ϕ̇ = 0, which
occurs during pre-inflationary dynamics. However, they are much more convenient for relating the
spectrum of perturbations at the end of inflation with the CMB temperature fluctuations. Therefore,
we first calculate the power spectrum PQ for Mukhanov-Sasaki variable Qk and then convert it
to PR , reported in Fig. 3.
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Thus, the strategy to truncate the classical phase space and then pass to quantum
theory using LQG techniques leads to a novel quantum theory. The total Hilbert
space is a tensor product, H = Ho ⊗H1, where Ho is the space of wave functions
Ψo describing a quantum FLRW geometry and H1 is the space of quantum states ψ
of perturbations. The first task is to construct the Hilbert space Ho of physical states
Ψo(a,ϕ), by imposing the Hamiltonian constraint on the homogeneous sector Γo.
The second task is to study quantum dynamics of fields Q̂ and T̂ on the quantum
geometry encapsulated in Ψo(a,ϕ). In particular we have to introduce the Hilbert
space H1 of wave functions ψ(Qk,Tk) of perturbations and develop techniques to
calculate the 2-point functions on H1 that are needed to obtain the scalar and the
tensor power spectra. The final task is to check the self-consistency of the truncation
strategy with which we began. Already in the classical theory, the truncated phase
space ΓTrun is useful only so long as the back reaction can be neglected. Therefore, in
the quantum theory, we have to check that the H admits solutions Ψo ⊗ψ in which
the energy density of perturbations is negligible compared to that in the background
all the way from the LQC bounce to the onset of slow roll. On the analytical side, this
requires the introduction of suitable regularization and renormalization techniques
for quantum fields Q̂ and T̂ propagating on the quantum background Ψo. On the
numerical side, one has to devise accurate numerical methods to calculate the energy
density in perturbations with sufficient precision during the evolution all the way
from the bounce to the onset of inflation, as the background energy density falls by
some 11 orders of magnitude.

These tasks have been carried out in [11, 12, 13] using earlier results obtained in
[4, 5, 8, 9, 10, 6, 7]. The next two sections provide a flavor of this analysis.

5 Analytical Aspects

• Background Quantum Geometry: In the classical theory, dynamics on Γo is gen-
erated by the single, homogeneous, Hamiltonian constraint, Co = 0. Each dynam-
ical trajectory on Γo represents a classical FLRW space-time. In quantum theory,
physical states are represented by wave functions Ψo(a,ϕ) satisfying the quantum
constraint ĈoΨo = 0. Each of these solutions represents a quantum FLRW geometry.

We are interested in those solutions Ψo which remain sharply peaked on classical
FLRW solutions at late times. In the sector of the theory that turns out to be phys-
ically most interesting [13], these states remain sharply peaked all the way up to
the bounce but in the Planck regime they follow certain effective trajectories which
include quantum corrections [15, 7]. In particular, rather than converging on the big
bang singularity, as classical FLRW solutions do, they exhibit a bounce when the
density reaches ρmax ≈ 0.41ρPl (see Fig. 2). It turns out that each (physically dis-
tinct) effective solution is completely characterized by the value ϕB that the inflaton
assumes at the bounce. This value turns out to be the key free parameter of the the-
ory. Finally, we need full quantum evolution from the bounce only until the density
and curvature fall by a factor of, say, 10−6−10−7. After that, the background can be
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Fig. 2 An effective LQC trajectory in presence of an inflation with a quadratic potential
(1/2)m2ϕ 2, where the value m = 6.1×10−6mPl of the mass is calculated from the 7 year WMAP
data (source [7]). Here V ∼ a3 is the volume of a fixed fiducial region. The long (blue) sloping
line at the top depicts slow roll inflation. As V decreases (right to left), we go back in time and the
inflaton ϕ first climbs up the potential, then turns around and starts going descending. In classical
general relativity, volume would continue to decrease until it becomes zero, signalling the big bang
singularity. In LQC, the trajectory bounces at ϕ ∼ 0.95 and volume never reaches zero; the entire
evolution is non-singular.

taken to follow the general relativity trajectory to a truly excellent approximation. 3

(For details, see [4, 5, 7]).
• Dynamics of Perturbations: There is an important subtlety which is often over-

looked in the quantum gravity literature: Dynamics of perturbations is not gener-
ated by a constraint, or, indeed by any Hamiltonian. On the truncated phase space
ΓTrun, the dynamical trajectories are tangential to a vector field Xα of the form
Xα = Ω αβ

o ∂βCo +Ω αβ
1 ∂βC′

2 where Ωo and Ω1 are the symplectic structures on
Γo and Γ1, and C′

2 is the part of the second order Hamiltonian constraint function in
which only terms that are quadratic in the first order perturbations are kept (ignoring
terms which are linear in the second order perturbations). Xα fails to be Hamiltonian
on ΓTrun because C′

2 depends not only on perturbations but also background quanti-
ties. However, given a dynamical trajectory γo(t) on Γo and a perturbation at a point
thereon, Xα provides a canonical lift of γo(t) to the total space ΓTrun, describing the
evolution of that perturbation along γo(t).

Therefore, in the quantum theory, dynamics of the combined system cannot be
obtained by simply imposing a quantum constraint on the wave functions Ψo ⊗ψ
of the combined system. One has to follow a procedure similar to what is done
in the classical theory. Thus, one first obtains a background quantum geometry Ψo

3 During this phase, the scalar field is monotonic in time in the effective trajectory. Therefore
we can use the scalar field as an ‘internal’ or ‘relational’ time variable with respect to which the
background scale factor (and curvature) as well as perturbations evolve. This interpretation is not
essential but very helpful in practice because of the form of the Hamiltonian constraint ĈoΨo = 0
(for details, see e.g. [15]).
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by solving ĈoΨo(a,ϕ) = 0, specifies the quantum state ψ(Qk,Tk) of the pertur-
bation at, say, the bounce time, and evolves it using the operator Ĉ′

2. The resulting
state Ψ(a,Qk,Tk,ϕ) describes the evolution of the quantum perturbations ψ on the
quantum geometry Ψo in the Schrödiger picture. (For details, see [12]).

• Trans-Planckian Issues: Quantum perturbations Q̂, T̂ propagate on quantum
geometries Ψo which are all regular, free of singularities. Thus, the the framework is
tailored to cover the Planck regime. What is the status of the ‘trans-Planckian prob-
lems’ which are associated with modes of trans-Planckian frequencies in heuristic
discussions? To probe this issue one has to first note that the quantum Riemannian
geometry underlying LQG is quite subtle [47, 48, 49]: in particular, while there is a
minimum non-zero eigenvalue of the area operators, the area gap, there is no volume
gap, even though their eigenvalues are also discrete [50, 51]. 4 As a consequence,
there is no fundamental obstacle preventing the existence trans-Planckian modes
of perturbations in our truncated theory. Indeed, in the homogeneous LQC models
that have been analyzed in detail, the momentum p(ϕ) of the scalar field ϕ is gener-
ally huge in Planck units. This poses no problem and, in particular, on the physical
Hilbert space the total energy density is still guaranteed to be bounded by ρmax (see,
e.g. [15]). Similarly, perturbations Q̂, T̂ of our truncated theory are permitted to
acquire trans-Planckian momenta. The real danger is rather that, in presence of such
modes, the energy density in perturbations may fail to be negligible compared to
that in the quantum background geometry. This issue is extremely non-trivial, espe-
cially in the Planck regime. If the energy density does become comparable to that
in the background, then we would not be able to neglect the back-reaction and our
truncation would fail to be self-consistent. 5 This is the trans-Planckian problem
we face in our theory of quantum perturbations on inflationary quantum geome-
tries. To address it we need regularization and renormalization methods to compute
energy density for quantum fields on quantum FLRW geometries. (For details, see
[12, 13]).

• An Unforeseen Simplification: As we just noted, the underlying FLRW quan-
tum geometry provides the necessary control on calculations in the deep Planck
regime. However, it confronts us with a new challenge of developing the mathemat-
ical theory of quantum fields on quantum geometries. At first this problem seems
formidable. But fortunately there is a key simplification within the test field approx-
imation we are using in the truncated theory [10, 12]: Mathematically the evolution
of Q̂,T̂ on any one of our quantum geometries Ψo is completely equivalent to that
of these fields propagating on a dressed, effective metric g̃ab constructed from Ψo. 6

Note that g̃ab contains quantum corrections and does not satisfy Einstein’s equation.

4 Properties of the eigenvalues of length operators [52, 53, 54] have not been analyzed in compa-
rable detail. But since their definitions involve volume operators, it is expected that there would be
no ‘length gap’.
5 Of course, this would not imply that the inflationary scenario does not admit an extension to the
Planck regime. But to obtain it one would then have to await the completion of a full quantum
gravity theory.
6 For scalar modes, the classical equation of motion involves also ‘an external potential’ A. This
has also to be replaced by a dressed effective potential Ã. for details, see [13].
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Indeed, it does not even satisfy the effective equations of LQC because, whereas
the effective trajectories follow the ‘peak of Ψo’, g̃ab also knows about certain fluc-
tuations encoded in Ψo. 7 Nonetheless, since g̃ab is a smooth metric with FLRW
symmetries, it is now possible to use the rich machinery of QFT on cosmological
space-times to analyze the dynamics of Q̂,T̂ in detail. In addition, one can now
make use of the powerful technique of adiabatic regularization that has been devel-
oped over some three decades [55, 56, 57, 58, 59, 60]. In particular, by restricting
ourselves to states ψ of perturbations which are of 4th adiabatic order, one can
compute the expectation values of energy density. This provides a clear avenue to
face the true trans-Planckian problem, i.e., to systematically test if the truncation
approximation is valid.

This remarkable simplification occurs because the dynamics of test quantum
fields is not sensitive to all the details of the probability amplitude for various FLRW
metrics encapsulated in Ψo; it experiences only to a few moments of this distribu-
tion. The phenomenon is analogous to the propagation of light in a medium where
all the complicated interactions of the Maxwell field with the atoms in the medium
can be captured just in a few parameters such as the refractive index. (For details,
see [10, 12, 13]).

• Initial Conditions: In the Schrödinger picture, the above simplification enables
us to evolve the quantum state ψ of perturbations. But we still have to specify the
initial conditions. Since the big bang of general relativity is replaced by the big
bounce in LQC, it is natural to specify them at the bounce. Now, in the truncation
approximation, perturbation is treated as a test field. Therefore, it is appropriate to
assume that the initial state has the form Ψo ⊗ψ at the bounce. Furthermore this
tensor product form will be preserved under dynamics so long as the back reaction
due to the perturbation remains negligible.

Let us begin with Ψo. In the effective theory, phase space variables are subject
to certain constraints at the bounce. We assume that Ψo is sharply peaked at a point
on this constraint surface (with small fluctuations in each of the two ‘conjugate’
variables). At the bounce, the allowed range of ϕ is finite but large, |ϕB| ∈ (0, 7.47×
105) in Planck units, and a detailed analysis of effective solutions has shown that
unless |ϕB|< 0.93, the effective trajectory necessarily encounters a slow roll phase
compatible with WMAP sometime in the future [9]. Thus, the peak of initial Ψo is
almost unconstrained. However, the requirement that Ψo be peaked is very strong
and makes the initial state of background geometry very special.

For perturbations, we assume the following three conditions on ψ at the bounce:
i) Symmetry: ψ should be invariant under the FLRW isometry group, i.e., under
spatial translations and rotations. This condition is natural because these are the
symmetries of the background Ψo and hence also of g̃ab it determines; ii) Regularity:
ψ should be of 4th adiabatic order so that the Hamiltonian operator has a well-
defined action on it; and, iii) The initial renormalized energy density ⟨ψ| ρ̂ |ψ⟩ren

7 While this difference is conceptually important, because the states Ψo of interest are so sharply
peaked, in practice the deviations from effective trajectories are small even in the Planck regime.
Of course the deviations from classical solutions are enormous in the Planck regime because g̃ab is
non-singular.



14 Abhay Ashtekar

in the perturbation should be negligible compared to the energy density ρmax in the
background. We have an explicit example, |ψ⟩ = |0obv⟩, of such a state called the
‘obvious vacuum of 4th adiabatic order’ which has several attractive properties [13].
Furthermore we also know that, given a state satisfying these properties, there are
‘infinitely many’ such states in its neighborhood. Thus, the existence of the desired
states is assured. However, in view of the large freedom that remains, it is desirable
to develop clear-cut physical criteria to cut down this freedom significantly. This is
an open issue, currently under investigation. (For details, see [11, 12, 13]).

Let us summarize the analytical framework. The initial condition for the quan-
tum state Ψo⊗ψ of the combined system is specified at the bounce in such a manner
that a slow roll inflation compatible with the 7 year WMAP data is guaranteed in
the background geometry. Thanks to an unforeseen simplification, we can use tech-
niques from QFT on cosmological space-times to evolve the perturbations Q̂ and
T̂ on the quantum background geometry Ψo. Finally, the initial conditions guaran-
tee that the truncation approximation does hold at the bounce: ψ can be regarded as
a perturbation whose back reaction on Ψo is negligible initially. Furthermore, states
are sufficiently regular to enable us to calculate the energy density in the background
and in the perturbation at all times. Therefore, one can carry out the entire evolution
numerically, calculate the power spectra and spectral indices and check if the trun-
cation approximation continues to hold under evolution all the way from the bounce
to the onset of the slow roll.

As discussed in section 3, a priori there are several possible outcomes. Pre-
inflationary dynamics could have such a strong effect that the power spectra and the
spectral indices that result from these calculations are incompatible with the WMAP
observations. In this case, the LQC extension would be ruled out by observations. It
is also possible that the Planck scale dynamics is such that the back reaction ceases
to be negligible very soon after the bounce making the truncation strategy incon-
sistent. In this case, our truncation strategy would fail to be self-consistent. Finally,
even if these possibilities do not occur, we may find that, for observable modes,
the state at the onset of inflation is sufficiently different from the BD vacuum that
there are departures from the standard inflationary predictions for future observa-
tions. One needs explicit numerical simulations to find out which of these various a
priori possibilities are realized.

6 Numerical Aspects, Observations and Self-Consistency

In this section, numerical values of all physical quantities will be given in natural
Planck units c=h̄=G=1 (as opposed to the reduced Planck units used in the cos-
mology literature where one sets 8πG=1). We will use both the conformal time η̃
and the proper (or cosmic) time t̃ determined by the dressed effective metric g̃ab
via ds̃2 := g̃abdxadxb = a2(−dη̃2 + dx2) = −dt̃2 + a2dx2 (where, as usual, xa are
the co-moving coordinates). This is because the cosmology literature generally uses
conformal time but comparison with general relativity can be made more transpar-
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ent in cosmic time by setting it equal to zero at the big bang in general relativity and
at the big bounce in LQC.

ϕ(tB) k∗ lnk∗ λ∗(tB) tk∗ ln[a(tk∗ )/a(tB)]

0.934 0.0016 -6.4 4008 1.8×105 5.2
1 0.024 -3.7 261 5.2×105 8.0

1.05 0.17 -1.8 37.1 7.6×105 10
1.1 1.2 0.2 5.1 1.0×106 12

1.15 9.17 2.83 0.63 1.25×106 13.9
1.2 70.7 4.2 0.09 1.48×106 16
1.3 4.58×103 8.43 1.36×10−3 1.97×106 20.2
1.5 2.7×107 17.1 2.3×10−7 2.9×106 28.9

Table 1 This table from [13] shows the value of the reference co-moving momentum k⋆ used in
the WMAP data, the corresponding physical wavelength λ⋆(t̃B) at the bounce, the time t̃(k⋆) at
which the mode k⋆ exits the Hubble radius during inflation, and ln[a(t̃(k⋆))/a(t̃B)], the number of
e-folds of expansion between the bounce and t̃(k⋆). We focus on the range for ϕB that is relevant to
explore whether pre-inflationary dynamics can lead to deviations from the BD vacuum at the onset
of the slow roll.

• WMAP Phenomenology: The 7 year WMAP data [25] uses a reference mode
k⋆ ≈ 8.58ko where, as before, ko is the co-moving wave number of the mode whose
physical wave length equals the radius of the observable universe at the surface of
last scattering. The WMAP analysis provides us with the amplitude PR(k⋆) of the
power spectrum and the spectral index ns(k⋆) which encodes the small deviation
from scale invariance, both for the scalar perturbations. The values are given by

PR(k⋆) = (2.430±0.091)×10−9 and ns(k⋆) = 0.968±0.012 . (1)

For the quadratic potential considered here, these observational data provide the fol-
lowing values of the Hubble parameter H and the slow roll parameter ε =−Ḣ/H2:

H(η̃(k⋆)) = 7.83×10−6 and ε(η̃(k∗)) = 8×10−3 . (2)

where η̃(k⋆) is the conformal time in our dressed effective metric g̃ab at which
the mode k⋆ exited the Hubble radius and the ‘dot’ refers to the derivative w.r.t. t̃.
Since the physical wave length of the mode ko is 8.58 times larger, it must have
left the Hubble radius ∼ 2 e-foldings before η̃(k⋆). Onset of slow roll inflation is
taken to commence a little before the ko exits its Hubble horizon. The value of the
Hubble parameter at this time is so low that the total energy density is less than
10−11ρPl. Therefore throughout the inflationary era general relativity is an excellent
approximation to LQC. Equations of general relativity (or, LQC) determine the mass
m of the inflaton as well as values of the inflaton ϕ at η̃(k⋆):

m = 1.21×10−6 and ϕ(t̃(k⋆)) =±3.15 . (3)
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Because of the observational error bars, these quantities are uncertain by about 2%.
In the numerical simulations we use the value of m given in (3). (For details, see
[9]).

• Evolution of the Background: So far numerical evolutions of the background
wave function Ψo are feasible only for kinetic dominated bounces, i.e., bounces for
which ϕB is small. This is because the required time over which one has to integrate
to arrive in the general relativity regime increases rapidly with ϕB. Fortunately, as
we will see below, this is the most interesting portion of the allowed values of ϕB.
These simulations show that Ψo remains sharply peaked on an effective trajectory
[7]. Since there is no obvious reason why this should not continue for higher ϕB val-
ues, it is instructive to examine all effective trajectories without restricting ourselves
to kinetic energy dominated bounces. The trajectory would be compatible with the 7
year WMAP data only if at the point at which H takes the value 7.83×10−6, within
the margin given by observational errors, ε = 8×10−3, and ϕ = 3.15. A surprising
result is that this is in fact the case under a very mild condition: ϕB ≥ 0.93 [9]. Note
that this result is much stronger than the qualitative ‘attractor behavior’ of infla-
tionary trajectories because it is quantitative and tuned to the details of the WMAP
observations. (For details, see [9]).

To make contact with the WMAP observations, we need to find k⋆ and the time
η̃(k⋆) at which the mode with co-moving wave number k⋆ exits the Hubble horizon
during inflation. For this, it is simplest to fix the scale factor at the bounce and we
will choose the convention aB = 1. (Note that this is very different from atoday = 1
often used in cosmology.) Then, along each dynamical trajectory one locates the
point at which the Hubble parameter takes the value H = 7.83× 10−6 (and makes
sure that at this time ε and ϕ are given by (2) and (3) within observational errors).
One calls the conformal time at which this occurs η̃(k⋆) and numerically calculates
the scale factor a(η̃(k⋆)) at this time. Then, the value of the co-moving momentum
k⋆ of this mode is determined by the fact that this mode exits the Hubble radius
at time η̃(k⋆). Thus, one asks that the physical wave number of this mode should
equal the Hubble parameter: k/a(η̃(k⋆)) = H(η̃(k⋆)). Table 1 shows the values of
k⋆, the physical wave length of the mode at the bounce time, the proper time t̃(k⋆) at
which the mode exits the Hubble horizon, and the number of e-foldings between the
bounce and time t̃(k⋆) for a range of values of ϕB which turns out to be physically
most interesting. (For details, see [13]).

• Evolution of Perturbations: Preliminary numerical simulations were first car-
ried out using four different states ψ at the bounce, satisfying the initial conditions
discussed in section 3. They showed that the results are essentially insensitive to the
choice. Then detailed and much higher precision simulations were carried out using
|ψ⟩= |0obv⟩, the ‘obvious vacuum of 4th adiabatic order’, at the bounce because, as
mentioned before, this state has a number of attractive properties. These simulations
revealed an unforeseen behavior: the power spectra for scalar and tensor perturba-
tions are largely insensitive to the value of ϕB. However, recall that there is finite
window (ko, 2000ko) of co-moving modes that can be seen in the CMB. Because
of the pre-inflationary dynamics, the value of k⋆ —and hence of ko— does depend
on ϕB and rapidly increases with ϕB. (See Table 1.) Therefore, the window of ob-
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Fig. 3 Ratio of the LQC power spectrum for curvature perturbations in the scalar modes to that
predicted by standard inflation (source [13]). For small k, the ratio oscillates very rapidly. The (red)
solid curve shows averages over (co-moving) bins with width 0.5ℓPl

−1.

servable modes is sensitive to the value of ϕB and moves steadily to the right as ϕB
increases.

Fig. 3 shows the plot of the ratio PLQC
R /PBD

R of the LQC power spectrum to
the standard inflationary one for curvature perturbations R of the scalar modes.
The (blue) circles are the data points. The LQC power spectrum has very rapid
oscillations (whose amplitudes decay quickly with k) which descend to the ratio
that is plotted. Since observations have only a finite resolution, to compare with
data it is simplest to average over small bins. We used bins which, at the bounce,
corresponds to a band-width in physical wave numbers of 0.5t−1

Pl . The result is the
solid (red) line. We see that the two power spectra agree for k ≳ 6.5 but LQC predicts
an enhancement for k ≲ 6.5. We will now comment on these features.

Let us first note that the LQC power spectrum in this plot uses the value ϕB =
1.15. As Table 1 shows, the corresponding k⋆ is 9.17. At this value, the two power
spectra are identical, whence the amplitude and the spectral index obtained from the
LQC evolution at k = k⋆ agrees with the values (1) observed by WMAP. However, as
we remarked, for k ≲ 6.5, the LQC prediction departs from that of standard inflation.
These low k values correspond to ℓ ≲ 22 in the angular decomposition used by
WMAP for which the error bars are quite large. Therefore, although the LQG power
spectrum differs from the standard one in this range, both are admissible as far as
the current observations are concerned.

What is the physics behind the enhancement of the LQC power spectrum for
k ≲ 6.5? And where does this specific scale come from? This enhancement is due to
pre-inflationary dynamics. At the bounce, the scalar curvature has a universal value
in LQC which sets a scale kLQC ≈ 3.21. Modes with k ≫ kLQC experience negligible
curvature during their pre-inflationary evolution while those with k comparable to
kLQC or less do experience curvature and therefore get excited. These are general
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physical arguments and one needs numerical simulations to determine exactly what
‘much greater than’ and ‘comparable to’ means. The simulations show that modes
with k ≳ 2kLQC already satisfy the ‘much greater than’ criteria. They are not excited
and for them the LQC state ψ at the onset of inflation is virtually indistinguishable
from the BD vacuum. That is why the two power spectra are essentially the same
for k ≳ 2kLQC. But for modes with k ≲ 2kLQC the LQC state ψ has excitations over
the BD vacuum whence there is an enhancement of the power spectrum.

What happens if we change ϕB? As we remarked above, the prediction of the
LQC power spectrum is pretty insensitive to the value of ϕB but the window in the
k space spanned by modes which are observable in the CMB changes, moving to
the right as ϕB increases. Now, as Table 1 shows, if ϕB > 1.2, we have ko > 6.5,
whence none of the observable modes would be excited during the pre-inflationary
evolution. In this case, at the onset of the slow roll, the LQC sate ψ would be indis-
tinguishable from the BD vacuum, whence all LQC predictions would agree with
those of standard inflation. Thus, there is a narrow window, 0.93 ≤ ϕB ≤ 1.2 for
which the background Ψo admits the desired slow roll phase and yet LQC predic-
tions for future observations can differ from the standard ones. One example is given
by a consistency relation r = −8nt in standard inflation, where r = 2PBD

T /PR is
the tensor to scalar ratio and nt is the spectral index for tensor modes. This rela-
tion is significant because it does not depend on the form of inflationary potential.
It turns out that r does not change in LQC but nt does, whence this standard con-
sistency relation is modified. Future observations would be able to test for such
departures. There is also a systematic study of the effect that excitations over the
BD vacuum can have on non-Gaussianities [26, 27, 28, 29]. Furthermore, it has
been recently pointed out that these non-Gaussianities could be seen in the galaxy
correlation functions and also in certain distortions in the CMB [61, 62, 63]. Thus,
there are concrete directions in which cosmological observations could soon start
probing effects that originate at the Planck scale. (For further details, see [13]).

• Self Consistency: Finally, let us discuss the issue of self-consistency of the
truncation scheme, i.e., the issue of whether the test field approximation continues
to hold under evolution. This issue is quite intricate and had remained unexplored
because of two different issues. The first issue is conceptual: it was not clear how to
compute the renormalized energy density for the quantum fields Q̂, T̂ in a manner
that is meaningful in the Planck regime. As discussed in section 5, we were able to
construct this framework by ‘lifting’ the adiabatic renormalization theory on clas-
sical cosmological space-times to that on quantum geometries Ψo. The second set
of difficulties comes from numerics: one requires very high accuracy and numeri-
cal precision. This is because i) the rapid oscillations of integrand of ⟨ψ| ρ̂ |ψ⟩ren in
the k space make it difficult to evaluate the exact value of the renormalized energy
density; and, ii) the background energy density itself decreases from Planck scale
to 10−11 times that scale. Indeed, so far we have only managed to find an upper
bound on the energy density in the perturbations, shown in Fig. 4. But this suffices
to show that, for ϕB > 1.22, our initial conditions at the bounce do give rise to a
self-consistent solution Ψo ⊗ψ throughout the evolution from the big bounce to the
onset of slow roll. These solutions provide a viable extension of the standard infla-
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Fig. 4 For ϕB = 1.23mPl, energy density in the background (upper curve) and an upper bound
on the energy density in perturbations (lower curve) are plotted against time from the bounce to
the onset of slow roll using Planck units (source [11]). The test field approximation holds across a
change of 11 orders of magnitude in both quantities.

tionary scenario all the way to the Planck scale. The issue of whether one can push
the value of ϕB to include the interesting domain ϕB < 1.2 is still under investiga-
tion. (There are several aspects to this problem, including a better handling of the
infrared regime, briefly discussed in [13].)

7 Summary and Discussion

I began in section 1 by making some suggestions: i) Progress in quantum gravity
should be gauged by the degree to which an approach succeeds in overcoming lim-
itations of general relativity; ii) The development of quantum theory, rather than
general relativity, offers a better example to emulate in this endeavor; and, iii) As
in quantum theory, it may be more fruitful to resolve concrete physical problems
at the interface of gravity and quantum theory rather than focusing all efforts on
obtaining a complete quantum gravity theory in one stroke. In sections 2 and 3 we
saw that the very early universe offers an obvious arena for this task for both con-
ceptual and practical reasons. Conceptually, the big bang is a prediction of general
relativity in a regime in which the theory is not applicable, whence it is important
to find out what really happened in the Planck regime. In practical terms, currently
the early universe offers the best hope to confront quantum gravity theories with
observations. In particular, we saw that the inflationary paradigm has been highly
successful in accounting for the inhomogeneities in the CMB —and hence account-
ing for the large scale structure of the universe— but it has several limitations. In
sections 4 - 6, I summarized how the limitations related to the Planck scale physics
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are being addressed in LQG. Specifically, by using the truncation strategy of LQG,
over the last six years it has been possible to extend the inflationary paradigm all the
way to the deep Planck regime. (For other treatments of pre-inflationary dynamics
within LQG, see e.g. [64, 65].)

The first finding is that the big bang singularity is resolved in LQC and replaced
by the big bounce. Since quantum physics —including quantum geometry— is reg-
ular at the big bounce, it is natural to specify initial conditions for the quantum state
Ψo that encodes the background, homogeneous quantum geometry, as well as for ψ
that describes the quantum state of perturbations. Physically, the initial conditions
amount to assuming that the state Ψo ⊗ψ at the bounce should satisfy ‘quantum
homogeneity’. More precisely, at the bounce one focuses just on that region which
expands to become the observable universe and demands that it be homogeneous
except for the inevitable quantum fluctuations that one cannot get rid of even in
principle. Now, because of the pre-inflationary and inflationary expansion, the re-
gion of interest has a radius smaller than ∼ 10ℓPl at the bounce. But as has been
emphasized in the relativity literature, this creates a huge fine tuning problem. For,
to account for the impressive fact that inhomogeneities in the CMB are really tiny
—just one part in 105— the required homogeneity at the bounce has to be truly ex-
traordinary. The standard inflationary paradigm is not really applicable at the Planck
scale and, even if one were to ignore this fact, it does not have a natural mechanism
to achieve this degree of homogeneity. In LQC, on the other hand, the big bang
singularity is resolved precisely because there is an in-built repulsive force with its
origin in the specific quantum geometry that underlies LQG. While this force is neg-
ligible when curvature is less than, say, 10−6 in Planck units, it rises spectacularly
in the Planck regime, overcomes the huge classical gravitational attraction and pre-
vents the big bang singularity. In more general models referred to in section 4, one
finds a pattern: every time a curvature scalar enters the Planck regime, this repulsive
force becomes dominant and dilutes that curvature scalar, preventing a singularity
(see e.g. [15]). This opens the possibility that the ‘dilution effect’ of the repulsive
force may be sufficient to create the required degree of homogeneity on the scale
of about 10ℓPl, thereby accounting for the assumed ‘quantum homogeneity’. If this
idea could to be developed in detail, dynamics of the pre-bounce universe will leave
no observable effects, providing a clear-cut case for specifying initial conditions at
the bounce. Of course, the pre-bounce dynamics will still lead to inhomogeneities at
larger scales on the bounce surface but they would have Fourier modes whose physi-
cal wave length is much larger than the radius of the observable universe. Therefore,
they would not be in the observable range; in the truncated theory considered here,
they would be absorbed in the quantum geometry of the homogeneous background.
This ‘dilution mechanism’ and other issues related to initial conditions are likely to
be a center of activity in the coming years.

As we saw in sections 5 and 6, we now have a conceptual framework and nu-
merical tools to evolve these initial conditions all the way from the bounce to the
onset of slow roll. The result depends on where one is in the parameter space that
is labeled by the value ϕB of the inflaton at the bounce. For a very large portion
of the parameter space we obtain the following three features: i) Some time in its
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future evolution, the background geometry encounters a slow roll phase that is com-
patible with the 7 year WMAP observations; ii) At the onset of this slow roll, the
state ψ of perturbations is essentially indistinguishable from the BD vacuum used in
standard inflation; and iii) the back reaction due to perturbations remains negligible
throughout pre-inflationary dynamics in which the background curvature falls by
some 11 orders of magnitude, justifying the underlying ‘truncation approximation’.
Thus, for this portion of the parameter space, we have a self-consistent extension of
the standard inflationary paradigm.

There is, however, a small window in the parameter space for which the feature
i) is realized but the initial state at the onset of inflation contains an appreciable
number of BD excitations. This number is within the current observational limits.
But the presence of these excitations signals new effects such as a departure from the
inflationary ‘consistency relation’ involving both scalar and tensor modes and a new
source of non-Gaussianities. These could be seen in future observational missions
[61, 62, 63]. The physical origin of these effects can be traced back to a new energy
scale kLQC defined by the universal value of the scalar curvature at the bounce.
Excitations with k ≲ 2kLQC are created in the Planck regime near the bounce. It
turns out that if the number N of e-foldings in the scale factor a between the bounce
and η̃ = η̃k⋆ is less than 15, then the modes which are excited would be seen in the
CMB. This occurs only in the small window of parameter space referred to above.
Since the window is very small, the ‘a priori probability’ that one of these values of
ϕB is realized in Nature would seem to be tiny. However, one can turn this argument
around. Should these effects be seen, the parameter space would be narrowed down
so much that very detailed calculations would become feasible. In either case, it is
rather exciting that the analysis relates initial conditions and Planck scale dynamics
with observations, thereby expanding the reach of cosmology to the earliest moment
in the deep Planck regime.

Even when a self-consistent solution Ψo ⊗ψ to the truncated theory exists, how
would it fit in full LQG? Recall the situation in classical general relativity. In cos-
mology as well as black hole physics, one routinely expects first order perturbations
whose back reaction is negligible to provide excellent approximations to the phe-
nomenological predictions of the exact theory. I see no obvious reason why the
situation would be different in quantum gravity. As a simple example to illustrate
the general viewpoint, consider the Dirac solution of the hydrogen atom. Since one
assumes spherical symmetry prior to quantization, this truncation excludes photons
from the beginning. Therefore, at a conceptual level, the Dirac description is very
incomplete. Yet, as far as experiments are concerned, it provides excellent approxi-
mations to answers provided by full QED until one achieves the accuracy needed to
detect the Lamb shift. I expect the situation to be similar for our truncated theory:
Conceptually it is surely quite incomplete vis a vis full LQG, but the full theory will
provide only small corrections to the observable effects.

To conclude, let me emphasize that there was no a priori reason to anticipate ei-
ther of the two main conclusions —the extension of standard inflation to the Planck
regime for much of the parameter space and deviations from some of its predictions
in a narrow window. Indeed, it would not have been surprising if the pre-inflationary
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dynamics of LQC was such that the predicted power spectra were observationally
ruled out for the ‘natural’ initial conditions we used at the bounce, or, if the self-
consistency of truncation had failed quite generally because of the Planck scale
dynamics. Indeed, this could well occur in generic bouncing scenarios, e.g. in situa-
tions in which the expansion between the bounce and the surface of large scattering
is not sufficiently large for the modes observed in the CMB to have wave lengths
smaller than the curvature radius throughout this evolution.
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