
Kepler and Mach’s Principle

Julian Barbour

Abstract The definitive ideas that led to the creation of general relativity crystal-
lized in Einstein’s thinking during 1912 while he was in Prague. At the centenary
meeting held there to mark the breakthrough, I was asked to talk about earlier great
work of relevance to dynamics done at Prague, above all by Kepler and Mach. The
main topics covered in this paper are: some little known but basic facts about the
planetary motions; the conceptual framework and most important discoveries of
Ptolemy and Copernicus; the complete change of concepts that Kepler introduced
and their role in his discoveries; the significance of them in Newton’s work; Mach’s
realization that Kepler’s conceptual revolution needed further development to free
Newton’s conceptual world of the last vestiges of the purely geometrical Ptolemaic
world view; and the precise formulation of Mach’s principle required to place GR
correctly in the line of conceptual and technical evolution that began with the ancient
Greek astronomers.

1 Introduction

Some of the most important advances in science are associated with Prague. The
meeting at which the talk on which this paper is based celebrated Einstein’s break-
through to the key ideas of general relativity (GR) in 1912 near the end of his time
in the Bohemian capital. In this paper, I wish to honour Kepler and his discovery of
the laws of planetary motion and Mach’s critique of Newton’s concepts of absolute
space and time. The creation of GR is unthinkable without them. I also wish to give
what I believe is the correct formulation of Mach’s principle. I believe that misun-
derstanding about this, ironically due to Einstein, may well be holding back both
cosmology and the discovery of the quantum law of the universe.
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I begin with some background to Kepler’s discovery of the laws of planetary mo-
tion and then discuss the key intuitive ideas that enabled him to find them. We shall
see that Kepler’s reaction to the conceptual framework he inherited from Ptolemy,
Copernicus and all previous astronomers was a clear anticipation of Mach’s reaction
to Newton’s absolute space and time. In the broadest terms, one can see the creation
of GR proceeding along a line of conceptual and technical development associated
with six scientists: Ptolemy, Copernicus, Kepler, Newton, Mach, Einstein.

The main topics covered in this paper are listed in the abstract, so I turn directly
to their presentation.

2 Some Important Facts of Planetary Motion

Everyone knows Kepler’s three laws: 1. The planets move in ellipses with the Sun at
one focus. 2. The radius vector from the Sun to the planet sweeps out equal areas in
equal times. 3. The period of each planet is proportional to a3/2, where a is the major
axis of its ellipse. The first two laws were discovered in 1605, the third followed in
1618.

However, what really counts for understanding the history of planetary astron-
omy 1 up to Kepler’s discovery of his first two laws is the form they take when the
eccentricity of the ellipse is relatively small, as it is for all the planets. We must start
with basic facts about ellipses (Fig. 1).

Because the ellipticity ε is half the square of the eccentricity e, the magnitude
of ε is small for all the planets. The planet with the largest eccentricity, e ≈ 1/5, is
Mercury; then comes Mars with e ≈ 1/11; Jupiter and Saturn have e ≈ 1/20; the
Earth (e ≈ 1/60) and Venus (e ≈ 1/140) have very small eccentricities and their
orbits are wonderfully circular. This is crucial for the effects that even conscientious
observers, who could use only the naked eye until 1610, were likely to find. The Sun
and Moon subtend about 30 arc minutes on the sky. The accuracy of Ptolemy’s ob-
servations was about a third of that, 10′. Tycho Brahe’s heroic observations, mostly
in the period 1576–1597, pushed the accuracy to 2′, as Brahe claimed, or 4′ accord-
ing to Kepler’s more sober estimate.

What these facts about the accuracy of naked-eye astronomy mean is that the
effects due to the orbit eccentricity, typically with a magnitude of degrees, were
readily observable, while those due to the ellipticity were virtually undetectable. The
only planet for which this is not strictly true is Mercury, but it is close to the Sun
and seldom well seen, so it played no significant role in the discovery of Kepler’s
laws.2 In one of several flukes in astronomy – the nearly equal apparent diameters
of the Sun and Moon and the advance of the perihelion of Mercury included – it just

1 See [1] for a detailed discussion of the history.
2 It did help the belated recognition of Kepler’s laws. His Rudolphine Tables (1627) led to the
correct prediction and observation of the transit of Mercury across the Sun in 1631, a year after
Kepler’s death. The vastly superior accuracy of the Tables compared with the rivals, and the laws
on which they were based, could no longer be denied.
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Fig. 1 The eccentricity e is OS/OB, the ellipticity ε =DE/OE is ε = e2/2 and very small for the
naked-eye planets.

so happens that among the remaining planets Mars was the most readily observable
and has an ellipticity just large enough for Kepler’s genius to espy it in the multitude
of Brahe’s observations.

To get an idea of Brahe and Kepler’s achievement in the discovery of the ellip-
ticity, Fig. 2 shows the orbit of Mercury. To the eye, it is a circle. One needs the
circumscribing circle to see the difference. Fapp – for all practical purposes, to use
John Bell’s acronym – the planetary orbits are circles as far as naked-eye astronomy
is concerned.

If the near circularity of the orbits is little known even among many astronomers,
another remarkable fact is virtually unknown. It relates to a property of the empty
focus of the planet’s ellipse. If you could hover in a spacecraft just above the Sun’s
surface and watch a planet on the celestial sphere, you would see it move in a great
circle with a decidedly non-uniform motion: first because, in accordance with Ke-
pler’s 2nd law, its physical speed in space does change, and, second, because the
Sun is displaced from the centre of the orbit. This geometrical effect doubles the
nonuniformity of the observed angular speed in the small-eccentricity approxima-
tion appropriate for the planets. If you then fly to the centre of the orbit and hover
there, the geometrical distortion is eliminated, and the observed angular speed re-
flects the true variable speed. But a miracle happens if you journey on to the empty
focus: the geometrical effect that enhanced the non-uniformity above the Sun is now
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Fig. 2 The orbit of Mercury is circular to one part in 50. The figure shows the foci and centre of
the orbit and the circle that most closely approximates the ellipse. The circle is inside the ellipse
along the line of the apsides joining the foci and outside at the quadrants. For Mars, the planet for
which Kepler discovered ellipticity, the gap between the circle and ellipse is 4.5 times less. The
figure shows clearly that the effects of eccentricity are far more readily observable than those of
ellipticity.

reversed: you see the planet move round its great circle with near perfect uniformity.
Figure 3 illustrates the combined effect of the circularity and empty-focus effect.

The way to understand the actual process of discovery of the laws of planetary
motions is through approximations to Kepler’s laws. If the eccentricity e is zero, the
orbits are circles and the speed uniform; if e is small, the orbits are still effectively
circles but eccentric, and the speed on the circle is nonuniform though seen from
the empty focus it is amazingly uniform. The major advances in the early history of
planetary astronomy were largely due to these two effects. They are, respectively,
very good approximations to Kepler’s first two laws. It is no exaggeration to say that
without them celestial dynamics could not have begun. However, they later became
a source of great confusion: Copernicus and Brahe were literally going round in
circles trying to make sense of the circles they imagined really were there in the sky.
That’s the story to which we now turn, beginning with the Greek astronomy.
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Fig. 3 Illustration of the empty-focus effect for Mercury. The Sun is left of the centre of the orbit.
An observer at the empty focus on the right sees the planet move round a great circle with near
perfect uniformity.

3 Greek Planetary Astronomy

Let’s start with what is readily observable: the Sun. Aristotle already knew that its
motion around the eclipic is non-uniform. Sometime around 150 BC (or 150 BCE
as we should now say), Hipparchus, the first great astronomer of antiquity, made
accurate measurements and a model to explain the non-uniformity. He supposed that
the Sun moves on a perfect circle and with perfect uniformity and that the observed
non-uniformity of its motion was due to a displacement D of the centre of the circle
from the centre of the Earth, assumed to be the centre of the Universe. The ratio of
D to R, the radius of the circle, was its eccentricity, the origin of both the technical
and non-technical meanings of the word.

Hipparchus needed only two observations, the times taken by the Sun from the
vernal equinox to the summer solstice and from there to the autumnal equinox, 94.5
and 92.5 days, respectively. These two data were enough to fix the two unknown
parameters of his model: the magnitude of e=D/R and the direction of the eccentric
centre. This defined the line of the apsides, which joins apogee and perigee (or
aphelion and perihelion in heliocentric astronomy). Hipparchus found e = 1/24,
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at that epoch more than twice the eccentricity of the Earth’s heliocentric, or Sun’s
geocentric, orbit, which was then ≈ 1/57.

Part of the inaccuracy was due to observational error, but the major contribution
was a flaw in the theory. Having not the remotest reason to suspect non-uniformity of
the motion, Hipparchus had inadvertently doubled the eccentricity. What was truly
remarkable was that, when the observational accuracy had been pushed to its naked-
eye limit by Islamic astronomers and Brahe, Hipparchus’s incorrect model proved
to be amazingly accurate in its predictions. In fact, it gives deviations from the true
positions never greater than 3/4 of an arc minute, way below the detection level of
naked-eye observations.3 For this reason, Hipparchus’s model, converted appropri-
ately to heliocentric motion of the Earth, passed unscathed through the Copernican
revolution. One of the gems in Kepler’s work was, as we shall see, the dethronement
of the Hipparchan model. It had reigned supreme for over 1700 years.

We now move on 300 years to the next great astronomer of antiquity: Claudius
Ptolemy. He worked in Alexandria and had access there to, among much else, Baby-
lonian observations made nearly a millenium earlier. He embarked on what was
surely the first rationally and comprehensively planned scientific-research project in
human history – the theoretical explanation through uniform circular motions of all
the seven planets. Meaning wanderers, these included the Sun and Moon as well
as Mercury, Venus, Mars, Jupiter and Saturn. Ptolemy’s astronomical compendium,
known through its Arabic title as The Almagest and written around 150 CE, was the
handbook of astronomy for close on 1500 years. His epicycles tend to be mocked
today as the paradigm of poor ad hoc science, often by scientists who should know
better,4 but they were one of the great contributions to the advance of science. On
top of that, Ptolemy made what is arguably the first great discovery in the history of
dynamics. To that I now turn.

Compared with the observed motion of a planet, that of the Sun is simplicity
itself, being just the mirror image of the purely periodic motion of a single planet,
Mother Earth, around the Sun. But the motion of a planet seen from the Earth is
a compound of two incommensurate periodic motions. This compounding leads to
the famous observed retrograde motions (Fig. 4).

3 This remarkable accuracy is due to the very small eccentricity of the Earth’s orbit, currently about
1/60. A solar theory developed by a Martian Hipparchus would not have survived for long because
Mars has eccentricity ≈ 1/11 (crucial for Kepler’s discoveries). It is worth mentioning that the
theory-independent quantity most immediately observable is always twice the eccentricity. For the
Sun observed from the Earth, this is currently 1/30 of a radian or about 2◦ (four apparent solar
diameters), half of which comes from the relative geometrical displacement of 1/60 and half from
the physical non-uniformity described by Kepler’s 2nd law. These equal contributions to observable
effects are very important for understanding the history of ancient astronomy. By comparison, the
observable ellipticity effects in the solar motion are about 120 times smaller at 1/30 of the apparent
solar diameter, i.e., 1′.
4 I suspect some of them trust the scientifically very ignorant account in Koestler’s Sleepwalkers,
in which it is stated that “There is something profoundly distasteful about Ptolemy’s universe; it is
the work of a pedant with much patience and little originality, doggedly piling ‘orb in orb’.” The
Almagest use the bare minimum of epicycles.
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Fig. 4 The retrograde motions of Jupiter. Against the backdrop of the fixed stars, Jupiter (like
all the planets) generally moves eastwards, never straying far from the ecliptic (the great circle on
which the Sun moves). But about once every 13 months it executes its retrograde motions, in which
the eastward motion comes to a stop and reverses into a westward motion until that halts and the
eastward motion is resumed. Any attentive observer who keeps reasonably good records is likely
to try to describe the complicated observed motion as a superposition of two simpler motions.

Following earlier proposals, which were probably only qualitative and may
have been suggested by the great mathematician Apollonius (circa 255–170 BCE),
Ptolemy attempted to describe them with the epicycle–deferent model (Fig. 5),
which I describe in the caption only for the simpler case of the three outer plan-
ets.

In heliocentric terms, the motion of the guide point D is the actual motion of
the planet, while the epicyclic motion is the reflection of the Earth’s motion seen
through the relative motion of the planet against the stars. The specific eccentricities
of the various planetary orbits played a crucial role in the details of Ptolemy’s the-
ory. The key thing to understand is that the Earth’s eccentricity, eE, is significantly
smaller that that of the three outer planets, eP, which are moreover further from the
Sun. On the sky, the observable effect O due to the orbital eccentricities is, to a first
approximation,

O =
eP

eE

aE

aP
,

where aE and aP are the Earth’s and the planet’s semi-major axes, respectively. For
Saturn, Jupiter and Mars O ≈ 1/30,1/15,1/8, respectively. This meant that the
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nonuniformity in the planet’s motion, represented in Ptolemy’s theoretical model
by the motion of the invisible guide point D, was readily observable and could not
be ignored. In a first attempt to describe it, Ptolemy copied the Hipparchan solar
model exactly by a simple displacement of the centre of the deferent from the ter-
restrial observer. For the epicycle motion, he assumed perfect uniformity around D.
In heliocentric terms, this corresponds to an exactly zero-eccentricity circular orbit
of the Earth. Note that the error due to circularity is tiny, around one part in 3600
and unobservable; the error due to the zero eccentricity is only 1/60. However, both
of these are reduced by the ratio aE/aP and escaped Ptolemy. They would in any
case have been very difficult for him, with his rudimentary mathematics, to model.

What is extremely interesting is the way Ptolemy fixed the parameters of the
deferent. The epicyclic motion being simply the reflection of the Earth’s motion,
the epicycle always points in the direction of the Sun. Ptolemy knew this; it did not
prompt him to heliocentricity, but it did help him to fix the deferent parameters and
to make that great discovery I mentioned.

His task was to fix the position of the invisible guide point: mission impossible
you might think. But no; when the Earth is exactly between the planet and the Sun

Fig. 5 Ptolemy sought to explain the regular eastward motion of, say, Jupiter, through uniform
eastward motion of an invisible guide point D on a circle called the deferent. Around D a spoke
of length less than the deferent radius rotated on an epicycle with perfect uniformity carrying the
planet P at its tip. The centre C of the deferent is displaced from the position of the terrestrial
observer O in order to explain the fact that even without the epicyclic motion the general eastward
motion of Jupiter is manifestly non-uniform like that of the Sun as described by Hipparchus’s
model.
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(so that the planet, in opposition, is due south at midnight), the epicycle, with the
planet on its tip, points simultaneously towards the Sun and the Earth. Moreover,
seen from the Earth, the guide point D is exactly behind the planet. Using such
observations, spread necessarily over many years, Ptolemy could mimic what Hip-
parchus had done for the Sun. He was able to determine the eccentricity and line
of the apsides of the deferent. But this was simultaneously the heliocentric orbit
of the planet! However, because Ptolemy directly copied Hipparchus and did not
suspect physical nonuniformity in the motion of D, he too found double the actual
eccentricity.

Now in the solar motion there was no possibility of detecting the error. But
Ptolemy’s model was not yet complete. He had to fix the ratio of the epicycle and
deferent radii. For this he needed just one more observation, of necessity made when
the planet is not in opposition. There is an almost poetic touch worth mentioning
here. When the planet is in opposition and due south a midnight, it rises at sun-
set, acronychal in Greek.5 Ptolemy needed just one non-acronychal observation to
determine the length of the epicycle.

With the model complete, Ptolemy – good scientist that he was – tested it us-
ing further non-acronychal observations. Dismay: the model failed to predict them
correctly. After a long period of trial and error that, as Ptolemy admitted, had no
principled basis except fidelty to observation – and hence truth – he found a defer-
ent model that worked very well.

He discovered that it was necessary to halve his previous deferent eccentricity
and introduce an ‘equalizing point’, or equant as it is now called. It lay on the other
side of the centre of the orbit from the observer along the line of the apsides, which
remained unchanged. Around the equant one had to imagine a spoke that rotated
with perfectly uniform (hence equalizing) angular velocity and cut the deferent cir-
cle in its new position at the point when the guide point D must be. As before, the
planet-carrying epicycle rotated with perfect uniformity about D.

With this model (somewhat modified for Venus and Mercury), Ptolemy found he
could describe and predict the motion of all the planets with surprisingly good accu-
racy. What, in the long run, was truly significant for astronomy and dynamics, was
that he had found a wonderfully good approximation to what Kepler’s second law
predicts. For, in heliocentric terms, Ptolemy’s equant is none other than the empty
focus of the planet’s orbit – and I have already explained what a superb approxima-
tion that is. Because he was also working with eccentric, perfectly circular orbits,
he also had an excellent approximation to Kepler’s first law.

If we discount the barely observable and hence ‘thankless’ Mercury, Ptolemy’s
theory was correct for all the other planets to excellent accuracy. For Mars, with the
largest eccentricity, the maximal deviation from Kepler’s laws was only one part in
225. That is the measure of his achievement.

Final comments before we move on to Copernicus and Kepler. First, all of
Ptolemy’s work was based on measurement of angles between objects that could
be seen. Second, none of his work or anything really accurate in astronomy could

5 Acronychal and non-achronychal observations were still vital in Kepler’s work.
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have been done up to the invention of truly accurate clocks in the 20th century with-
out the diurnal revolution of the stars, aka the Earth’s rotation. It was the one and
only clock that could be used. Time was also read off it by measurement of angles
between visible objects.

4 Copernicus

It is ironic that Copernicus stumbled on his revolutionary idea by trying to undo
Ptolemy’s greatest discovery: the equant. Despite great admiration for Ptolemy’s
technical skill and achievements, Copernicus strongly disliked the equant’s viola-
tion of the literally sacred principle that all the divine objects in the heavens must
move with perfect uniformity in perfect circles. Ptolemy had maintained the circles
(with good reason – they worked) but had discarded uniformity for the sake of truth.
Copernicus, like at least one Islamic astronomer before him, sought to replace the
equant device by a combination of uniform circular motions that, of necessity, was
more complicated than Ptolemy’s solution if fidelty to observational facts was to be
maintained. While working on this project, he realized that all the retrograde mo-
tions of the planets could be understood as effects of relative motion if one assumes
that the Earth is not at rest but moves in a circle.

There is an important point here that needs to be emphasized: Copernicus pro-
posed a theory of terrestrial mobility, not heliocentricity. This was still the main
point for Galileo, as shown by his famous retort “Eppur si muove.” All that Coper-
nicus needed, and said, was that the Sun must be near the centre of the circle in
which the Earth moved.6 For Copernicus, the Sun and its precise position had no
physical significance. He said the Sun had a worthy place in the heavens, placed to
illuminate the dance of the planets. As we shall see, the true discoverer of heliocen-
tricity was Kepler.

Copernicus made four great contributions: first, he unavoidably, though without
having an inkling of its significance, drew attention to the Sun, which was very im-
portant for Kepler; second, he explained the retrograde motions; third, as an under-
appreciated consequence of that, he brought to planetary astronomy a unity entirely
lacking in Ptolemy’s universe. Fourth, his arrangement of the solar system and the
absence of observed parallax of any of the stars required the stars to be immensely
farther away than Saturn.

The third contribution needs a little elaboration. Since Ptolemy worked with an-
gles, he had no way of determining any distances. He therefore set all deferent radii
equal to the nominal value unity and found the epicycle radius as a ratio to unity.
Copernicus realized that this ratio, different for each planet, simply reflected the
ratio of the radii of his various circles: the Earth’s to that of the planets. He could
use the radius of the Earth’s orbit as a trigonometric base line to determine the dis-
tances to the planets. This immediately gave him a very good overall picture of the

6 Copernicus actually thought that the Sun might have some slow motion of its own.
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solar system. He worked out the correct order, distances and average speeds of all
the planets, measured of course in terms of the radius of the Earth’s orbit (now, of
course, the astronomical unit) and the terrestrial day. He obtained a qualitative form
of Kepler’s third law and facts that Kepler subsequently found highly suggestive.
It is often said that the Copernican and Ptolemaic arrangements are kinematically
identical. This is not strictly true and does not do justice to Copernicus. Geometri-
cal dispositions are part of kinematics. Ptolemy’s Almagest did not have them or the
lower bound on the distance to the stars.

A nice way to compare the respective achievements is this: when Ptolemy died,
he could predict what the sky would look like – where the planets would be – as
seen from Alexandria centuries after his death, but he had no idea what it would
look like from Mars. When Copernicus died in 1543, he did know or, at least, knew
how to calculate the positions of the Sun and planets as seen from Mars. In fact, the
possibility was only literally confirmed in the space age.

Copernicus did great things, but, from a modern point of view, he bequeathed a
most odd solar system to posterity. I have already mentioned the Sun’s role as a mere
lantern. Really strange was the location of the ‘centre of the Copernican universe’.
Ptolemy had discovered an equant in the deferents of all the planets, essentially
because the Earth, unbeknown to him, was a spaceship that allowed him to look at
the planets’ positions from a whole circle in the solar system and not just from the
Sun’s position (as in the acronychal observations). But because the Sun’s motion is
merely the Earth’s 180◦ out of phase, there was no way observation could force an
equant on the solar motion. Ptolemy left the Hipparchan model unchanged.

And so did Copernicus. Even though he made Mother Earth a planet like the oth-
ers and contrived makeshift substitutes for their equants, it never occurred to him
that the Earth should get anything equivalent, so he simply inverted the Hipparchan
model and gave the Earth an eccentricity twice what it should have. That simultane-
ously singled out the empty focus of the Earth’s orbit as a special point. Moreover,
because of the fluke of the Earth’s eccentricity being so small Copernicus was mis-
led into thinking that the lines of the apsides of the planets all converged, not on the
Sun, but at the very same point that Kepler was later to identify as the Earth’s empty
focus. Figure 6 shows how small the mismatch was – but also that Copernicus did
not propose a truly heliocentric system.

In fact, the clearest evidence of that is in the diagrams which Copernicus drew
to show the orbits of the planets. They do not show the Sun. It was in no way an
integral part of his scheme.

There were many other oddities, some very bizarre, in the Copernican cosmos,
most of which arose because Copernicus simply inverted the Ptolemaic models.
When De Revolutionibus was published in the same year 1543 that he died, Coper-
nicus knew he had made a monumental discovery, but, like Ptolemy, his insights
and methods were purely geometrical and kinematical. Kepler commented “he was
unaware of his riches”.
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Fig. 6 Copernicus believed that the lines of the apsides of the three outer planets converged on
a void point near the Sun that was actually the empty focus of the Earth’s heliocentric orbit. The
true Sun is the black disc on the left, where the solid lines of the apsides converge. The dashed
lines show Copernicus’s belief. The mismatch is small but shows that Copernicus thought solely
in geometrical terms, for which such an arrangement with the Sun playing no physical role is
perfectly acceptable.

5 Kepler

In this section, I want to concentrate on the huge conceptual change that Kepler
(1571–1630), for whom a magnificent portrait (Fig. 7) survives, introduced and how
he anticipated Mach’s attitude to dynamics. I am firmly of the belief that more is still
to come of it. I can only pick out the highlights. The details, which are absorbing,
can be found in [1].

The best place to start is Brahe’s observations of the comet of 1577, which es-
tablished its distance as interplanetary. For Kepler, the supreme importance of the
observations were that they ‘destroyed’ the crystal spheres widely believed to carry
the planets. In his fascinating account of how he mastered the motion of Mars, the
Astronomia Nova published in 1609, he repeatedly pointed out that Brahe’s obser-
vations proved that the planets were not carried by spheres. The comet had passed
clean through the solar system without crashing into them. They could not be there.
In one of the great intuitive insights in the history of science, he proclaimed: “Hence-
forth the planets must find their way through the void like the birds through the air.
We must philosophize about these things differently.”

Crucial questions then arose. What moves the planets? How do they find their
way? What if anything is directing them? Let us start with the second and third
questions, which reveal Kepler’s affinity with Mach – or better Mach’s with Kepler.
Birds find their way around the world by reference to features in the terrain and sky.
But, according to the astronomy Kepler inherited from Ptolemy, Copernicus and
all previous astronomers including Tycho Brahe, literally everything was controlled
and directed by void points, above all the equants that Ptolemy had discovered,
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in empty featureless space. The difference from birds was blatant. Like them, the
planets must use visible objects. Motion is relative to things you can observe. The
only significant visible things that the planets could be guided by were the Sun
and the distant stars. The guiding and determining role of visible matter is exactly
what Mach was insisting on two and a half centuries later and led him to argue so
persuasively against Newton’s absolute space.

Moreover, if crystals spheres do not carry the planets, whence comes their mo-
tion? The planets must either have inherent motive force or be subject to it. This was
a veritable change of mindset. A prominent part of the immensely long subtitle to
the Astronomia Nova proclaimed it to be Celestial Physics. Kepler introduced forces
into the heavens. True, they were Aristotelian, with the force assumed to determine
the velocity it imparts and not the acceleration as in Newtonian dynamics. The as-
tronomical data could give Kepler no hints in that direction, ironically for the same
reason that Einstein three centuries later was able to subsume gravitational forces
and inertia into a single geodesic law. Indeed, until very late in his work, Kepler

Fig. 7 Johannes Kepler. The epitaph that he composed for himself read “I used to measure the
Heavens, now I measure the shadows of Earth. The mind belonged to Heaven, the body’s shadow
lies here.” His grave and tombstone in Regensburg, where he died in 1630, have been lost.
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believed the planets moved in circles. What more perfect and self-contained motion
exists than that?

What was really important about Kepler’s forces was not their mode of action
but their conjectured source: the Sun and the planets themselves. In this key respect,
Kepler’s forces correctly prefigured Newton’s. Their sources and controlling power
resided in physical bodies, not void points in empty space. Here too, in identifying
motion-controlling power with bodies and not space, Kepler anticipated Mach, who
insisted that apparently force-free inertial motion was nothing of the sort but the
outcome of an as yet unknown physical effect of all the matter in the Universe. Let
me here quote Mach [2], p. 296: “The natural investigator must feel the need of
further insight – of knowledge of the immediate connections, say, of the masses of
the Universe. There will hover before him as an ideal an insight into the principles
of the whole matter, from which accelerated and inertial motion result in the same
way. The progress from Kepler’s discovery to Newton’s law of gravitation, and the
impetus given by this to the finding of a physical understanding of the attraction
in the manner in which electrical actions at a distance have been treated, may here
serve as a model.” That Mach sensed an affinity between himself and Kepler comes
through in this quotation.

Let us return to details. Kepler had to explain two different kinds of motion: the
eccentric circular motion around the Sun and the motion towards and away from the
Sun during its course. To explain the circular motion, Kepler conjectured (nearly a
decade before Galileo observed it!) that the Sun rotates about an axis perpendicular
to the ecliptic and that what one might called ethereal ‘spokes’, rotating with the
Sun, protruded from its equator. These, he assumed, swept the planets along in their
circular motion, their strength diminishing with increasing distance from the Sun
in order to explain why the more distant planets moved slower. As for the motion
towards and away from the Sun, he conjectured that that it housed a powerful magnet
and each planet a lesser one. The alignment of the magnetic poles would pull the
planet towards the Sun on one side of the orbit and repel it on the other side.7 These
ideas are illustrated in Kepler’s diagram shown in Fig. 8.

By modern standards, Kepler’s forces were rather primitive and could not have
survived detailed quantitative testing. What was decisive was that they focussed all
of Kepler’s interest on the Sun and its precise location. He was firmly convinced
that the centre of the solar system did not lie at that mysterious void point that, post
his discoveries, we recognize as the empty focus of the Earth’s orbit, but at the entre
of the relatively nearby mighty physical Sun (the distance between the Sun and the
empty focus is 1/30 of the Earth’s semimajor axis).

There were two ways to confirm this: first, to show that the lines of the apsides
all converged exactly on the Sun, not the void point relatively close to it. Second,
to show that the speed in orbit was not controlled by the void equant, as it was in
Ptolemy’s and, de facto despite his intense dislike of it, in Copernicus’s astronomy,
but by the Sun. I shall come to the crucial steps through which Kepler eventually
came to his area law, which governs the speed, in a moment. First, I want to make

7 William Gilbert’s influential book on magnetism, published in 1600, strongly influenced Kepler’s
thinking.
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Fig. 8 This diagram encapsulates the difference between Kepler and all his predecessors. The
arrival of a new mind on the astronomical scene is demonstrated nowhere more clearly than in the
comparison of the diagrams in De Revolutionibus and the Astronomia Nova. The Sun is prominent
by its absence in Copernicus’s; in Kepler’s, as here, it takes pride of place, controlling the motion
of the planet through physical forces.

clear why Kepler has the credit for heliocentricity in a way that Copernicus does
not. Modest as the move from the empty to the occupied focus as centre of the solar
system may appear, it was a small step that anticipated and made possible Newton’s
giant leap of understanding in the workings of the world. It identified the turning
point.

Kepler’s conceptual ideas drove all the technical work done at Brahe’s behest in
Prague – to establish the precise motion of Mars to the same accuracy that the Dane’s
incomparable observations allowed. His primary tool was trigonometry, which he
put to use like no one before him. Kepler was the first man who could roam truly
freely in imagination through the solar system. Appropriately, he also wrote almost
the first work of science fiction: a dream of a journey to the Moon. The entire thrust
of his trigonometric work was to establish heliocentricity beyond gainsaying, above
all to show that the knitting-needle lines of the apsides all converged bang in the
middle of the Sun and not as in the Copernican scheme (Fig. 6) at the nearby void
point.8

There is even a sense in which Kepler anticipated gauge theory: he knew per-
fectly well that, kinematically, all of his precise geometrical results could be exp-

8 Kepler’s work was actually a much more logically consistent and definitive proof of the Coper-
nican cosmology than Galileo was able to muster. In fact, magnificent as his many acheivements
were, the Tuscan completely failed to recognize or begin to comprehend Kepler’s achievement.
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resed just as adequately in the Tychonic 9 or geocentric Ptolemaic schemes as in the
Copernican arrangement, but triumphantly pointed out that in all three the lines of
the apsides meet at one point in the Sun. That was the ‘gauge-invariant’ content of
his discoveries. The area law, the discovery of which we have still to discuss, had
the same status.

Let us go through the most important technical advances to which Kepler was
led by his intuition. I said that Plotemy’s acronychal observations were made at
opposition, when the observed planet is due south at midnight and the Sun is directly
behind the terrestrial observer. This is not quite true; to facilitate computations and
very likely because he did not realize the importance of the difference, Ptolemy’s
actual acronychal observations were made not when the true Sun was behind the
observer but a substitute, a mathematically defined ‘mean Sun’ that moved around
the ecliptic with perfectly uniform speed, coinciding with the true Sun only at the
equinoxes. The angular distance between the true and mean Sun could be as much
as those 2◦ corresponding to twice the Earth’s eccentricity. Brahe had continued
the Ptolemaic practice of using the mean Sun; Kepler meticulously corrected his
observations by interpolation to make them correspond to his beloved true Sun.
This was a first useful sharpening of accuracy.

Kepler was also the first person to understand how to take into account correctly
the fact that the planets do not all move in the ecliptic. This gives rise to signifi-
cant effects, causing the retrogression loops to have an out-of-ecliptic component
(Fig. 4); without proper understanding of and correction for the effect Kepler could
never have found the ellipticity of Mars’s orbit. In fact, Kepler’s first major result is
what one might call his zeroth law: each planet moves in plane that passes through
the Sun and is fixed in the frame defined by the stars.

But the real gem in Kepler’s work that prepared the ground for his geatest dis-
coveries was his finding of the true location of the Earth. All motion is relative.
If you are trying to determine the position and motion of a distant object, you will
surely make errors if you are mistaken about your own position and motion.10 This
is what Kepler understood perfectly – and he had good reason to be concerned. Ac-
cording to Copernicus and Brahe, the Earth’s orbit was sui generis: unlike those of
the other planets, it had no equant. Kepler’s sense of the uniformity of nature told
him that could not be true. The Earth had to have an equant. If so, that would mean
it would have only half the eccentricity attributed to it by Copernicus and Brahe.
Existing theory must be putting the Earth in the wrong place and thereby distorting
the interpetation of the observations of all the extraterrestrial bodies.

In an article written in 1930 to mark the 300th anniversary of Kepler’s death,
Einstein described – with good reason – Kepler’s halving of the Earth’s eccentricity

9 Tycho Brahe could not believe in the immensity of the Universe that, given the absence of any
observable stellar parallax, followed from Copernicus’s proposal and therefore proposed that the
Sun goes round the Earth while Mercury and Venus orbit it.
10 I was told some years ago that the largest uncertainty in many high-precision tests of GR was
the uncertainty in the Earth’s position that results from the perturbing influence of the asteroids,
whose size is known but not, to sufficient accuracy, their densities.
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as one of the most beautiful things in all of science. Kepler knew that too. He had
the finest diagram in his book engraved to show the way it was done (Fig. 9).

His stroke of genius was to use a trigonometric base line formed by the Sun and
Mars at times when he knew Mars was at exactly the same point in its orbit. One

Fig. 9 This diagram shows the halving of the Earth’s eccentricity in the Copernican cosmology and
of the Sun’s in the Ptolemaic and Tychonic. In the Copernican scheme, Mars is at the point x on
three occasions. Knowing the relevant angles, Kepler could determine the corresponding positions
of the Earth at the three points on the dashed circle. They established the true position of the Earth’s
orbit and that it must have half the eccentricity assumed by Copernicus.
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of the great clarifications due to Copernicus’s insights was that the planets traced
out invariable orbits in the space defined by the Sun and fixed stars, returning to
the same orbital position after completion of one orbit. Now among all data, helio-
centric periods were the easiest to determine accurately; that of Mars was known to
be 685 terrestrial days. Kepler searched among Brahe’s 21-year treasury for Martian
observations that by chance were separated by multiples of 685 days. At them, Mars
must be at the same point in space. Kepler found three such observations. Acrony-
chal observations of Mars and the theory of them, which he could trust, told Kepler
the direction of Mars as seen from the Sun at all times. The direction to the Earth
was also known, so Kepler could determine the angle between Mars and the Earth
seen from the Sun. Brahe’s observations gave him the angle between the Sun and
Mars as seen from the Earth. Kepler had the one fixed Sun–Mars side of the triangle
and two angles of the Sun–Mars–Earth triangle. Three such observations gave three
positions of the Earth. But one only needs three known points to fix the position
and size of a circle.11 Kepler’s determination of the position of the Earth’s orbit
finally revealed the error in Hipparchus’s solar theory. The halving of the Earth’s
eccentricity created a firm foundation for astronomy. It was hugely important.

Having properly located the Earth, and still believing in circular orbits, Kepler
set about fitting the parameters of Mars’s orbit to Brahe’s observations. He still
made use of the Ptolemaic equant even though convinced the speed in orbit must
somehow be determined relative to the Sun and not the void equant. It was a won-
derful piece of work and a posthumous triumph for Ptolemy’s circles and equant.
But the merry-go-round just would not get everything right. Kepler tweaked here,
he tweaked there, but whatever he did an occasional error of up to just 8 minutes
of arc in the position of Mars would show up. He could never have done it without
Brahe’s observations, which were both as accurate as they could be and also, most
importantly, comprehensive.12 This is the place to quote Kepler:

“We, whom God in his goodness has given such a careful observer in Tycho
Brahe, and whose observations reveal the 8′ error of Ptolemy’s calculations, should
thankfully recognize the goodness of God and make use of it. That is, we should
make the effort (supported by the arguments for the falsity of our assumptions) to
find at last the true form of the celestial motions... These 8′ alone reveal the need for
reformulation of the whole of astronomy; they become the material of a great part
of my work.”

11 Keplers’ work on Mars began under the assumption that the Earth has an exactly circular orbit.
Because the Earth’s eccentricity is ≈ 1/60, this asumption is accurate to better than one part in
7000. Even when Kepler knew the Earth’s orbit could not be a perfect circle, he could assume it
to be so for his work on Mars with its far larger eccentricity ≈ 1/11. In the story of the discovery
of the laws of their motion, the planets were like the characters in a good novel. Each had an
individual personality determined by its eccentricity and semimajor axis. The interaction of these
personalities, reflected in the observational data, is what makes the discovery of the laws of the
planets’ motion such an absorbing story.
12 Ptolemy had made and used relatively few observations obtained at times and orbital positions he
expected to be especially valuable for construction and testing of his observations. Brahe believed
in blanket coverage of the orbits: who could know what would be relevant and revealing? This was
truly prescient and of immense value to Kepler.
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Now it is time to talk about the area law. Along with establishing where the lines
of the apsides meet all in one place, this was the other great bonus of the ‘Machian’
shifting from a void point to the Sun. For the apside adjustment, the shift was from
the Earth’s empty focus. In the case of the area law, it was from Mars’s empty focus.

Kepler was keenly aware of the value of the equant phenomenon: mathemati-
cally, in pre-calculus days, anything that involved uniform motion (angular veloc-
ity about the equant in this case) was a significant plus. Non-uniform motion was
barely tractable. For this reason astronomers were still using the equant to calculate
ephemerides in Newton’s time three quarters of a century after Kepler, absolutely
insistent on a physical interpretation of celestial motions, had done away with it.

The area law was one of the most serendipitous discoveries – of which there are
so many – in science. Kepler was looking for a law, governed by the Sun, that would
determine the speed in orbit of each planet. His physical intuition told him the Sun
must exert a force on the planet that would be stronger, the closer the planet was to
the Sun. In fact, that was clearly indicated by obsevations, which showed that the
planets moved fastest when closest to the Sun. Plausibly enough, Kepler guessed
that the speed would be inversely proportional to the distance from the Sun. Strong
support for this came from the fact that the equant law showed the orbital speeds at
aphelion and perihelion to be exactly in inverse proportion (Fig. 10).

Fig. 10 The exact area law and the speed law that follows from the empty-focus effect both predict
that the orbital speeds at aphelion and perihelion are inversely proportional to the distance from
the Sun.

But the mathematics of the putative law, applied to the eccentric orbit of Mars,
proved to be beyond Kepler’s abilities. He therefore decided to replace what he
regarded as the exact law by an approximation in the form of the area law! He was
encouraged to this by his recollection of the way Archimedes had estimated the area
of a circle by dividing it into ever smaller segments. As his work progressed and he
gained an increasing number of accurate locations of Mars through his application
of trigonometry to Brahe’s observations, always under the key assumption that the
Sun was the centre of the solar system and the controller of planetary motions, he
came to realize that the area law did actually govern the speed in orbit.

Kepler’s final, very tortuous breakthrough to the joint discovery of ellipticity of
the orbit and the area law was in fact somewhat delayed by his enthusiasm for theory.
The moment he found unambiguous evidence that Mars’s orbit could not be circular,
he started to speculate and initially guessed an egg-shaped orbit, i.e., fatter at one
end than the other. Slowly, as he accumulated more and more accurate locations,
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the egg was abandoned. A chance glance at a table of logarithmic tables was what
finally led him to the ellipse – more serendipity. The full truth at last came to him
around Easter 1605.

6 Kepler’s Significance

It would be a futile counterfactual exercise to ask how science would have devel-
oped without Brahe and Kepler’s extraordinary efforts. However, it is entirely pos-
sible that, even without the discovery of the telescope and the possibility that gave
for more accurate observations, decades could have passed before the discovery of
the laws of planetary motion. What is absolutely certain is that Newton’s Principia
is inconceivable without Kepler’s discoveries. All three of Kepler’s laws were im-
portant: from the third, Newton deduced the 1/r2 force law for gravity; from the
first, that the planet’s elliptical motions could be understood as the outcome of two
competing tendencies – rectilinear inertial motion and gravitationally induced de-
flection from it along the direction to the Sun. In many ways, Kepler’s second law
was actually the most important. Newton recognized this by making it the subject of
his very first proposition in the Principia. It will be worth saying something about
this.

By 1670 at the latest, Newton had most of the elements of a rudimentary dy-
namics, above all the notion of inertial motion that would persist forever were it not
changed by the action of other bodies. He understood elastic collisons and the nature
of centrifugal force. What hindered a full blossoming of dynamics was the prevail-
ing mechanistic conception of the world due above all to Descartes. According to
this view, all mechanical action took place through direct contact: collisions. The
Cartesian cosmos was a terribly crowded world crammed full of pieces of matter in
continual collision. Newton basically subscribed to this view. Although he had laws
to describe collisions, there was little he could do with them.

The real advance almost certainly came in 1679, when Robert Hooke, newly
appointed as secretary of the Royal Society, pressed Newton hard to confirm his
[Hooke’s] proposal “of compounding the celestiall motions of the planetts of a direct
motion by the tangent & an attractive motion towards the central body.” Calculations
of Newton that he may well have made as a result of Hooke’s letters of 1679 have
survived and include the key result that became Proposition 1 in the Principia:

Proposition 1. The areas which revolving bodies describe by radii drawn to an
immovable centre of force do lie in the same immovable planes, and are proportional
to the times in which they are described.

This is the theoretical explanation of Kepler’s area law. It had far-reaching impli-
cations, for it told Newton that nature should be described, mathematically at least,
by forces that act over distances. Huygens had coined the expression centrifugal
force; in explicit imitation, Newton called his new forces centripetal. He was well
aware of the revolutionary nature of what he was doing; he was proposing to give
universally despised occult forces a decisive role in physics. He was very cautious
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about this and emphasized, in hypotheses non fingo, that he was not making any
assumptions about the physical mode of action of the forces he introduced. What he
did stress was that such forces, introduced mathematically, could explain at a stroke
a vast number of diverse phenomena. They opened up a whole field for exploration
that is still ongoing. Kepler’s 8′ led to more than the reformulation of astronomy.

7 Intermezzo: Christian Doppler

Before we move on to Mach and Einstein, brief mention should be made of Chris-
tian Doppler (Fig. 11) and the important eponymous effect that he predicted in 1842
while a professor at the Czech Polytechnic in Prague. Ironically, Doppler was seek-
ing an explanation of the different colours of binary stars; the effect he proposed to
explain the difference was physically correct but completely wrong in his applica-
tion. Binary stars have different colours because, in the first place, their temperatures
(and to some extent their chemical compositions) are different. Doppler suggested,
without at that time any experimental support, that the observed frequency of the
light emitted by the stars depended on their orbital speeds, which are different (and
epoch dependent). This is true, but the effect was far too small to explain the colour
differences.

Fig. 11 Christian Doppler (1803–1853).
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The Dutch meteorologist Buys Ballot (1817–1890) made the first experimental
confirmation of the Doppler effect in 1845 by getting a group of musicians to play a
calibrated note on a train on the line between Utrecht and Amsterdam. Of course, in
those days there were no police sirens that make the effect so evident today. Despite
this confirmation of the effect for sound, Doppler’s proposal of a dependence of the
observed frequency of light on the speed of the source remained controversial for a
surprisingly long time – decades. One person who helped to establish it was Ernst
Mach.

8 Mach and Kinematic Residues in Dynamics

Mach (Fig. 12) was one of the great experimentalists of all times and a man of wide
interests. His name is associated with three very diverse things in science: Mach
bands in psychology, the Mach number in aerodynamics, and Mach’s principle in
the theory of gravity and inertia. Mach was twice nominated for the Nobel Prize for
his discovery of shock waves (Fig. 13), but so many exciting discoveries were being
made in the early 20th century that he missed the honour he deserved.

Fig. 12 Ernst Mach (1838–1916).
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Fig. 13 Mach’s flash photograph of a supersonic bullet and the shock wave generated by it.

Before we discuss Mach’s critique of Newton’s absolute space and time and Ein-
stein’s reaction to it, it is worth reproducing the diagram (Fig. 14) in Blackmore’s
valuable informative biography of Mach [3]. This shows the instrument Mach de-
vised soon after completing his doctorate to demonstrate the Doppler effect for
sound. A vertical tube AA rotates in the plane perpendicular to the page. Air forced
through the column creates sound in the whistle at G. A person standing in the
plane of the rotating tube hears a clearly modulated pitch of the whistle as it ro-
tates at the end of the tube, while someone standing some distance way at right
angles to the plane of rotation hears a constant pitch. The Doppler effect for sound
is demonstrated in this simple way. The apparatus “became a frequently used class
demonstration device throughout Central Europe for many years” [3], p. 19.

To return to our topic, visible and physical markers were key to Kepler’s discov-
eries. The Sun had a dual role: it defined and created motion of the planets. As for
the stars, Kepler, like Copernicus, declared them the ultimate frame of reference, by
definition at rest. His laws did not contradict this, and the stars did not exhibit any
relative motion.

The star-studded shell of this closed world retained the Sun’s warmth generated at
its centre, or focus. Kepler introduced the Latin word for hearth into scientific usage,
first in optics and then in astronomy. Descartes (1596–1650) shattered Kepler’s cosy
‘home’ when he introduced the mechanical philosophy. He, above all, marks the
transition from the closed world to the infinite universe. In it, all bodies, including
the stars and their constituents, move relative to each other.

Descartes actually had two diametrically opposed concepts of motion: absolute
and relative. The origins of both are worth retelling (for more details, see [1]). Let
us start with the first. One day, lying on his bed, he is said to have spotted a fly on
the ceiling and saw he could fix its position by its two distances from the walls. The
story is ben trovato, apposite even if invented. Cartesian coordinates, so convenient



24 Julian Barbour

Fig. 14 Mach’s device to confirm the Doppler effect for sound, reproduced from [3].

for defining straight lines, were born. The idea of rectilinear inertial motion (not yet
named so) was already in circulation; in a book, Le Monde, ready for publication in
1632, Descartes made it the foundation of mechanics long before Newton.

Implicit here is an unchanging reified space like the ceiling on which the fly
crawled: Newton’s absolute frame in all but name. No longer do the Sun and stars
define motion. Space does. Whereas pre-Kepler void points governed the planets’
motions, now invisible space controls all motion. This is occult forces in spades!

Descartes was just about to publish Le Monde, which assumed correctness of the
Copernican cosmology, when he heard about Galileo’s condemnation by the Inqui-
sition. In alarm – piety he claimed – Descartes hurriedly withdrew his book and
thought long and hard how he could save his mechanical philosophy. Eventually
he introduced a quite different definition of place and motion in his Principles of
Philosophy (1644). He declared all motion to be relative. Now any one body has
infinitely many positions and motions according to which bodies are used to de-
fine them. However, he did grant the existence of ‘one true philosophical definition
of position’, according to which the position of any one body is defined by its en-
velope, i.e., the immediately adjacent matter that surrounds it. The reason for this
definition, actually a throwback to the Aristotelian notion of topos, is to be found in
Descartes’s contention that the Earth is carried around the Sun by a vortex, which is
thus its immediate envelope. The point then is that the Earth does not move relative
to the vortex and therefore does not move in accordance with the true definition.
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Since terrestrial mobility (and not heliocentricity) was the Inquisition’s objection to
Copernicus, Descartes felt he had secured his position and explicitly stated that in
accordance with his proposal the Earth does not move.

But after this avowal of pure relationalism, Descartes, failing to note the contra-
diction, reverted to uniform rectilinear motion as the first principle of mechanics.
This made no sense in a world with position and motion defined relatively in either
way. It required an implicit absolute space.

Newton studied Descartes’s book closely and did see the contradiction. Knowing
what could be done with the law of inertia, he recoiled from the virtual impossi-
bility of expressing it rigourously in Descartes’s shifting cosmos. The prominence
given to absolute space and time in the Scholium at the start of the Principia are a
covert dismissal of Descartes, even though Newton does grant the great difficulty
of distinguishing “the true motions of particular bodies from the apparent; because
the parts of that immovable space in which those motions are performed do by no
means come under the observation of our senses.”

In fact, as Mach was later to remark, Newton’s laws were never verified relative
to absolute space and time but to exactly the same referents that Kepler had used:
the effectively fixed stars and the time-measuring clock supplied by the diurnal rev-
olution of the stars.

Descartes’s absolute and relative are the origin of the reductionistic–holistic di-
chotomy. Mach the holist reacted to Newton the reductionist when he spoke of ‘im-
mediate connections’ and the ideal that hovers before the natural investigator as
‘an insight into the principles of the whole matter’. The essence of reductionism
is threefold: simple objects, atoms, that move in accordance with simple laws, pri-
marily the law of inertia, in a simple background: absolute space. But if position is
relative, only the totality of separations between objects is real: the world is held
together by an indissoluble network of relations, and history is nothing but their
evolution. As Mach said: “The universe is not twice given, with an earth at rest and
an earth in motion; but only once, with its relative motions alone determinable.”
[Mach, p.284]

But Mach went much further than this epistemological verity. Kepler had given
the Sun a dynamical role. Mach extended it to the stars or, rather, the totality of
masses of the Universe. They should not only define but also control motion. That
Mach envisaged this done by some as yet unkown physical mechanism is confirmed
by his famous refutation of Newton’s bucket argument 13 for absolute motion:

“Newton’s experiment with the rotating vessel of water simply informs us that
the relative rotation of the water with respect to the sides of the vessel produces
no noticeable centrifugal forces, but that such forces are produced by its relative
rotation with respect to the mass of the earth and the other celestial bodies. No one

13 Newton introduced the bucket to make a serious scientific argument but simultaneously a fool of
Descartes, whose mechanical philosophy relied heavily on centrifugal force. Many people writing
on the absolute–relative debate and unaware of the background to the bucket argument have been
misled into thinking the issue is about the difference between linear and circular motion, which is
not true. In fact, I increasingly think Newton confused himself.
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is competent to say how the experiment would turn out if the sides of the vessel
increased in thickness and mass till they were ultimately several leagues thick.”

It is well known that Mach’s critique made a powerful impression on the late
teenage Einstein. It was the main stimulus to his attempt to eliminate all trace of
Newton’s absolute space through the creation of general relativity. The idea that
the totality of the masses of the universe ‘work together’ to create the local inertial
frames in which force-free bodies move rectilinearly and uniformly is what Einstein
called Mach’s principle. For a variety of reasons, this has had a tangled history, for
which several factors are responsible.

9 Einstein’s Reaction to Mach

Let me start with Einstein’s strange confusion of two distinct meanings of inertia:
there is inertial motion, as defined in Newton’s first law, and inertial mass. That they
are distinct is evident: the concept of inertial mass does not enter into the statement
of the first law. Mach gave a much admired operational definition of inertial mass,
which he defined through the accelerations bodies impart to each other when they
interact. These are inversely proportional to their intrinsic inertial masses. Mach’s
disagreement with Newton on this score was not about substance but proper for-
mulation. What really concerned Mach was the origin of inertial motion: Newton
believed absolute space governed it, Mach the totality of masses in the universe.

Reading Einstein’s various comments about Mach and inertia I am forced to
conclude he was the victim of semantic confusion. He does not seem to have seen
any difference between the two meanings of the word inertia. His most egregious
distortion of Mach is in the 1917 paper in which he laid the foundation of modern
relativistic cosmology. He claims:

“In a consistent theory of relativity there can be no inertia relatively to ‘space’,
but only an inertia of masses relatively to one another. If, therefore, I have a mass
at a sufficient distance from all other masses in the universe, its inertia must fall to
zero.”

Mach would have dismissed this comment as a gross distortion of his ideas;
Einstein is clearly substituting a bogus issue about inertial mass for Mach’s proper
concern with inertial motion. Unfortunately, Einstein’s 1917 comment led to several
misguided attempts to implemented a Mach’s principle along inappropriate lines.

However, the complexity of the Machian issue has a much more solid basis and
raises a real dilemma, which is illustrated in Fig. 15. What is at stake is the very
meaning of the word relativity. Einstein and Minkowski had in mind the observer
dependence of the split of spacetime into space and time and, more generally, to the
complete freedom to lay down coordinates on spacetime in any suitably continuous
way. Einstein spoke of general covariance; today one speaks of four-dimensional
diffeomorphism invariance. That may be called Einsteinian relativity. The most im-
portant aspect of it is the denial of simultaneity as a physically significant concept.
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time
Einsteinian

Each observer makes
a di!erent split
into space and time

Machian

In each instant the positions
of objects are de"ned
relative to each other

Fig. 15 The two quite different meanings of relativity. Relativity as defined by Minkowski and
Einstein refers to the ambiguity in the splitting of four-dimensional spacetime into time and space.
Relativity as defined by Mach means that the position of any one body is defined at a given instant
by its distances to all the other bodies in the Universe at that instant. The conflict of concepts is
evident: Machian relativity makes complete sense if there exists a distinguished notion of simul-
taneity, but that is denied as the first principle of Einsteinian relativity.

In contrast, relativity as originally formulated by Mach makes no sense without
an underlying notion of simultaneity: it asserts that the position of any given object
at a given instant is defined by its distance to all the other objects in the universe in
that instant. Most relativists today would say that this is a hopelessly obsolete notion
because Einstein and Minkowski showed that our intuitive notion of simultaneity
has no counterpart in the physical world. Does this mean that Mach’s principle is a
dead duck?

Not necessarily. In his only article not devoted to quantum mechanics, John Bell
wrote on special relativity and sought “to drive home the lesson that the laws of
physics in any one reference frame account for all physcial phenomena, including
the observations of moving observers” [4], p. 77. Attempts to find a generically
distinguished frame in Minkowski space are doomed to fail on account of its high
symmetry, but the case is altered in GR: gravity brings structure into spacetime. I
want to use the remainder of this paper to give what I believe is the correct definition
of Mach’s principle and to show how Einsteinian gravity is much more compatible
with Machian relativity than one might imagine. I shall even suggest that Machian
relativity is the deeper principle.
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However, I must first briefly recount how Einstein set out to implement the idea
that Mach had espoused: that inertial motion should not be governed by absolute
space but the totality of masses in the Universe (a more detailed account is given in
[5]).

What was decisive for Einstein was his discovery of special relativity in 1905.
This arose from his successful reconciliation of Maxwell’s electrodynamics, with
its only apparent need for an ether, and Galilean relativity applied to all physical
phenomena. The lesson Einstein drew from his success was that uniform motion
through Newton’s absolute space could not be defined – it was impossible to as-
sociate any actual speed with it. Although he said nothing explicit at the time, this
result already suggested to Einstein the way to implement Mach’s idea: to show that
the alleged absolute space had no observable effects at all, for then one could argue
that it does not exist. The impossibility of determining a speed of uniform motion
through space was the first step in that direction.

The decisive idea that set in motion Einstein’s long search for a new theory of
gravity was the equivalence principle, that ‘happiest thought’ of his life which oc-
curred to Einstein in 1907. Its importance for Einstein was not so much that gravity
and inertia are identical in essence but the possibility “that the principle of relativ-
ity is also satisfied for systems moving relatively to each other with acceleration”
[6]. The equivalence principle suggested that this could be done for at least uniform
accelerations.

Einstein’s strategy from then on was clear and settled. He would attempt to ex-
tend the relativity principle ever further. The next step, clearly suggested by Mach’s
retort to Newton’s bucket argument, called for extension to uniform circular motion,
for which the magnitude of the acceleration, as in the equivalence-principle eleva-
tor, is constant in magnitude but its direction changes. From there, the logical step to
complete relativity of motion was not too difficult. Einstein advanced the principle
of general covariance as the physical foundation of the new theory of gravity he was
seeking.

Two aspects of Einstein’s approach should be noted. His principle of relativity
did not in any way directly address the way in which the Universe itself behaved.
It merely said that the description of its behaviour should be the same in what-
ever coordinate system one cared to describe it. Einstein’s immediate acceptance
of Kretschmann’s objection that general covariance in itself had no physical con-
tent but was merely a requirement of mathematical consistency was a remarkable
volte-face that has generated much argument and confusion about the foundations of
general relativity and, in particular, Mach’s principle. The only conclusion I wish to
draw from this brief discussion is that Einstein did not attempt a direct implementa-
tion of Mach’s ideas but attacked the problem indirectly. This comes out especially
clearly in a comment he made in 1918 [7]:

“We want to distinguish more clearly between quantities that belong to a phys-
ical system as such ... and quantities that depend on the coordinate system. Ones
initial reaction would be to require that physics should introduce in its laws only
quantities of the first kind. However, the scientific development has not confirmed
this conjecture. It cannot dispense with coordinate systems.”
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There is a clear anticipation here of the distinction, now commonplace due to de-
velopments in gauge theory, between so-called true degrees of freedom and redun-
dant degrees of freedom. What I want to question is whether Einstein had correctly
identified what are the “quantities that belong to a physical system as such”. In my
final section before brief conclusions, I wish to suggest that he may have made the
incorrect identification.

10 The Machian Approach: Shape Dynamics

There is no doubt what Mach regarded as the true physical quantities: bodies that
possess intrinsic mass and distances (in Euclidean space) between them. He most
certainly did not think time had any ontological reality [2], p. 273: “It is utterly
beyond our power to measure the changes of things by time. Quite the contrary, time
is an abstraction at which we arrive from the changes of things.” But Minkowski,
followed by Einstein, had given time the same ontological status as space. This
led Einstein to identify the “quantities that belong to a physical system as such”
with four-dimensional spacetime intervals, whereas Mach had identified them with
exclusively three-dimensional spatial entities. Let us see where such a standpoint
takes us.

Let us start with one thing on which we can be sure Mach and Einstein would
have agreed: if the local frames in which force-free particles move inertially are de-
termined by the universe, there must be a sense in which the universe is a closed dy-
namical system, for otherwise one could never close the circle and say the whole de-
termines the parts: local inertial frames. This underlying sense is implicit in Mach14

and explicit in Einstein’s 1917 cosmological model.
Let us then allow the notion of simultaneity and assume that the universe is a

closed dynamical system. We can consider two models: an island universe of N
point particles, which matches the ontology of Mach’s original proposal, and a
three-dimensional Riemannian geometry closed up on itself, which corresponds to
closed-space vacuum GR. In the point-particle case, the difference between Newton
and Mach is easily expressed in terms of configuration spaces. Newton’s is R3N ,
three coordinates for each particles. But Mach said only the inter-particle separa-
tions are real. We need to quotient R3N by the Euclidean translations and rotations
to obtain the 3N −6-dimensional Machian relative configuration space (RCS). Ab-
solute position and orientation are removed from the RCS. In fact, although Mach
did not recognize the need, one must go a step further since distance persupposes an
absolute scale. We also need to quotient by dilatations; this takes us to the 3N −7-

14 See his comment [Mach, p. 287] “Nature does not begin with elements, as we are obliged to
begin with them. It is certainly fortunate for us that we can, from time to time, turn aside our eyes
from the overpowering unity of the All, and allow them to rest on individual details. But we should
not omit, ultimately to complete and correct our views by a thorough consideration of the things
which for the time being we left out of account.” How can completion come without a definite
sense in which the universe is closed?
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dimensional shape space S . I would say that an instantaneous shape of the universe
matches Mach’s requirement that we grasp the ‘immediate connections’.

However, that does not yet mean that we have gained ‘an insight into the princi-
ples of the whole matter’. Machian histories of the universe will be curves in S . The
issue now is this: what determines these curves? The fact is that any Newtonian his-
tory can be represented as a curve in S : one simply plots the representative points
of the successive shapes. In what way would a Machian history be distinguished
from an arbitrary Newtonian one plotted in S ?

A problem with Mach is that he tended to speak in general intuitive terms. It is
here that a penetrating analysis by Poincaré [8], who analyzed the problem in much
more precise terms, provides the guide. Poincaré asked: what defect, if any, arises
from Newton’s use of absolute space? His answer was that a true believer in relation-
alism, convinced that only inter-particle separations rab have physical significance,
would pose the initial-value problem of particle dynamics in these terms: rab, ṙab
should determine the evolution rab(t),a,b = 1,2, ...,N, uniquely. This matches the
formulation in terms of the particle coordinates and velocities; in accordance with
Laplacian determinism, rrra, ṙrra,a = 1,2, ...,N, determine the evolution.

Poincaré pointed out that the rather natural transfer of this requirement from R3N

to the RCS fails. The reason is that the data rab, ṙab contain no information about
the angular momentum LLL in the system, whereas this information is encoded in
rrra, ṙrra (under the assumption that the masses are known). Although the presence or
absence of LLL is undetectable in rab, ṙab initial data, the curves that result do encode
information about LLL. Poincaré said that this fact, reflected in the manifest presence
of angular momentum in the solar system, was the true evidence for the existence of
a dynamically active agent in addition to the separations rab and their rates of change
ṙab. As a convinced believer that only relative motions should have dynamical effect,
Poincaré said he found this state of affairs repugnant but that it was necessary to
accept the empirical evidence.

It is strange that Poincaré did not consider a Machian resolution to the problem,
namely that for for a dynamically closed universe as a whole the relative data do
determine the future uniquely. One can then attribute the failure of this requirement
in subsystems of the universe precisely to the fact that the masses of the universe
do determine local inertial frames of reference. Poincaré formulated his ideas in the
context of the RCS, but they can be directly extended to and made more stringent
in shape space. This leads me to the formulation of the Mach-Poincaré principle for
particle dynamics in these terms.

Mach–Poincarè Principle. Specification of a point and direction (strong form)
or point and tangent vector (weak form) in shape space S should determine the
evolution in S uniquely.15

15 In my mind, the great virtue of Poincaré’s analysis is that he formulates requirements on the form
of a dynamical theory of the Universe in terms of the initial data that one regards as belonging
“to the physical system as such”. This allows a much more precise formulation than Einstein’s
requirement that all coordinate systems should be on an equal footing, which is actually void of
content, or that the action should satisfy certain symmetry requirements, which is also amenable
to adjustment, as one sees with the passage from standard Newtonian dynamics to parametrized
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It is necessary to allow for the weaker form if one is to model expansion of
the Universe. For discussion of this delicate issue, see my introduction to shape
dynamics [9]. The extension to dynamical geometry is relatively obvious; the shape
space in this case is conformal superspace, which provides the natural framework
for describing the dynamics of three-dimensional conformal geometries. I cannot
describe in detail this work; the most important papers are [10, 11, 12] (see also
Koslowski’s contribution to this conference proceedings).

What one can say is that, if the Universe is spatially closed, there is a well-defined
sense in which GR implements Mach–Poincaré principle in the weak form very
well, indeed perfectly if there is no cosmological constant. For all the details I must
refer the reader to the references already cited, but the key conclusions do need to be
stated, at least for vacuum gravity. First, by virtue of its clearly formulated first prin-
ciples shape dynamics introduces of necessity a notion of simultaneity into GR and
insists that the physical enitity which is evolving is the conformal three-geometry
on successive leaves of a foliation of spacetime by hypersurfaces of constant-mean-
(extrinsic)-curvature (CMC). Second, the spacetime in which these hypersurfaces
are embedded is completely determined by specification of a point and tangent vec-
tor in conformal superspace. This fact was first demonstrated in [13].

If the ideas of shape dynamics, which do follow very naturally from Mach’s
ideas, are vindicated, it will be incorrect to view shape dynamics as a rule to select
certain special solutions – those that are globally hyperbolic and CMC foliable –
from among the full set allowed by GR. Rather GR might have to be seen as an
extension of shape dynamics beyond its physical domain. I suspect we shall have to
await the quantum theory of gravity to see if this view is justified.

11 Conclusions

Galileo said “He that attempts natural philosophy without geometry is lost.” He
meant of course three-dimensional geometry, which was still Euclidean in his day,
though I am sure he would have greeted Riemann’s generalization with enthusiasm.
The first step in the still ongoing creation of the dynamical theory of the Universe
was Hipparchus’s theory of the Sun’s motion. It is important that all the great work
in astronomy reviewed in this paper studied the evolution of intrinsic shapes, of
which the fixed stars formed part. Absolute position, orientation and size played
role at all; I have already emphasized that every conclusion drawn in astronomy
was based on measurement of angles between observed physical objects. These in-
cluded measurements of what was called time but was actually the diurnal rotation
of the stars. Even now, with geometry curved and made dynamical, the irreducible

particle dynamics, which adds reparametrization invariance as a symmetry without changing the
physical content of the theory. In contrast, implementation of Mach’s ideas boils down (in the
case of the weak Mach–Poincaré principle) to identification of the true (configurational) degrees
of freedom and construction of a theory in which they and their velocities wrt an independent
variable uniquely determine the evolution of the true degrees of freedom.
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epistemological basis of science is observed angles. We now see the Universe as
almost infinitely flexible, but we cannot do without angles.

A conformal geometry supplies the ‘immediate connections’ that Mach exhorted
us to grasp. As regards “the principles of the whole matter”, I would say that as far
as classical physics is concerned they are encapsulated in the weak Mach–Poincaré
principle applied to a closed Universe whose possible spatial configurations are de-
fined by conformal geometry.

Let me end with my sincere thanks to the organizers, above all Jiřı́ Bičák, for the
invitation to speak at the wonderful conference in Prague.
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