
Observers, observables and measurements in
general relativity

Donato Bini

Abstract To perform any physical measurement it is necessary to identify in a non
ambiguous way both the observer and the observable. A given observable can be
then the target of different observers: a suitable algorithm to compare among their
measurements should necessarily be developed, either formally or operationally.
This is the task of what we call “theory of measurement,” which we discuss here in
the framework of general relativity.

1 Introduction

The spacetime (or absolute) point of view constitutes a unified scenario for quanti-
ties which, in the pre-relativistic physics, were associated with distinct notions: time
and space themselves, energy and momentum, mechanical power and force, electric
and magnetic fields and so on. In every day experience, however, our intuition is still
compatible with the perception of a three-dimensional space and a one-dimensional
time and therefore any physical measurement requires a local recovery of the pre-
relativistic type of separation between space and time. To this purpose we need
some prescription in order to perform the required splitting, and hence identifying a
“space” and a “time” relative to any given observer. Any such prescription requires
a congruence of timelike world lines with a future-pointing unit tangent vector field
u (i.e., the local time direction) which we interpret as the world lines of a family of
(test) observers with associated 4-velocity u.

The splitting of the tangent space at each point of the congruence into the lo-
cal time direction u and the local rest space spanned by vectors orthogonal to u
(hereafter LRSu), allows one to decompose all spacetime tensors, including tenso-
rial operators, and tensor equations into their spatial and temporal components. One
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may ask then if there exist natural or special observer families in a given spacetime.
This is clearly the case of a stationary spacetime where a special observer (timelike)
congruence is associated with the timelike Killing vector field. Also, any spacetime
admitting a spacelike foliation has naturally associated with it a timelike congru-
ence, namely that of the normal directions to the slicing itself. It is known that any
spacetime admitting separable geodesics (e.g., as a consequence of the existence
of a Killing tensor of rank 2) also admits a foliation. For example, Kerr spacetime
with the metric written in standard Boyer-Lindquist coordinates summarizes these
three conditions: it has the family of static observers (whose world lines are aligned
with the coordinate time lines, i.e., with unit tangent vector parallel to the timelike
Killing vector ∂t ), the family of locally nonrotating observers or ZAMOs (whose
world lines are orthogonal to the t=constant hyersurfaces) and finally, the families
of Painlevé-Gullstrand observers who follow geodesic timelike lines since the latter
have a separable dependence from the coordinates. A review of the essential split-
ting formalism follows below. For more details one can refer for instance to Refs.
[1, 2, 3, 4, 5, 6] (and references therein).

2 Orthogonal decompositions

Let g be the four-dimensional spacetime metric with signature +2 and components
gαβ (α,β = 0,1,2,3), ∇ its associated covariant derivative operator and η the unit
volume 4-form which assures spacetime orientation. Let u be a future-pointing unit
timelike vector field which identifies an observer, u ·u = −1. The local splitting of
the tangent space into orthogonal sub-spaces uniquely related to the given observer
u, is accomplished by a temporal projection operator T (u) (along u) and a spatial
projection operator P(u) (generating the LRSu). These operators, in mixed form, are
defined as follows

T (u) = −u♯⊗u♭ P(u) = I +u♯⊗u♭ (1)

where I ≡ δ α
β is the identity on the tangent spaces of the manifold and the sym-

bols ♯ and ♭ identify the fully contravariant and covariant representation of tensors,
respectively. In terms of components the above relations write

T (u)α
β =−uα uβ , P(u)α

β = δ α
β +uα uβ . (2)

Given a
(p

q

)
-tensor S, let us denote as [P(u)S] its fully spatial projection obtained

by acting with the operator P(u) on all of its indices,

[P(u)S]α ...
β ... = P(u)α

γ · · ·P(u)δ
β · · ·S

γ ...
δ ... (3)

The splitting of S relative to a given observer is the set of tensors which arise from
the spatial and temporal projection of each of its indices as we are going to discuss.
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This observer-dependent set of tensors represent S and it is termed as its (geometri-
cal) measurement by the observer u.

1. Splitting of a vector
If S is a vector field then its splitting gives rise to a scalar field and a spatial
vector field

S ↔ {u ·S, [P(u)S]} . (4)

In terms of components they read

Sα ↔ {uγ Sγ ,P(u)α
γ Sγ} . (5)

In fact, with respect to the observer u, the vector S admits then the following
representation

Sα = [T (u)S]α +[P(u)S]α =−(uγ Sγ)uα +P(u)α
γ Sγ . (6)

2. Splitting of a
(1

1

)
-tensor

If S is a mixed
(1

1

)
-tensor field, then its splitting consists of a scalar field, a

spatial vector field, a spatial 1-form and a spatial
(1

1

)
-tensor field, namely

Sα
β ↔{uδ uγ Sγ

δ , P(u)α
γ uδ Sγ

δ , P(u)δ
α uγ Sγ

δ , P(u)α
γ P(u)δ

β Sγ
δ} .

In terms of these fields, the tensor S admits the following representation with
respect to the observer u

Sα
β = [T (u)α

γ +P(u)α
γ ][T (u)δ

β +P(u)δ
β ]S

γ
δ

= (uδ uγ Sγ
δ )u

α uβ −uα uγ P(u)δ
β Sγ

δ

−uδ uβ P(u)α
γ Sγ

δ +[P(u)S]α β . (7)

The local spatial and temporal projections of a
(p

q

)
-tensor is easily generalized.

For example, the metric tensor gαβ has the (trivial) representation

gαβ = P(u)αβ +T (u)αβ .

3. Splitting of p-forms
Given a p-form

S = S[α1...αp]ω
α1 ⊗ . . .⊗ωαp ≡ 1

p!
Sα1...αp ωα1 ∧ . . .∧ωαp (8)

we define the electric part of S relative to the observer u the quantity[
S(E)(u)

]
α1...αp−1

=−uσ Sσα1...αp−1 (9)
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or in a more compact form S(E)(u) = −u S . Similarly we define as the mag-
netic part of S the quantity[

S(M)(u)
]

α1...αp
= P(u)β1 α1 . . .P(u)

βp αp Sβ1...βp (10)

or, in a compact form, S(M)(u) = P(u)S. From the above definitions we deduce
the following representation of S

S = u♭∧S(E)(u)+S(M)(u) , (11)

or in components

Sα1...αp = p!u[α1 [S
(E)(u)]α2...αp]+[S(M)(u)]α1...αp . (12)

For example, the splitting of the unit volume 4-form η gives rise to the follow-
ing representation

η =−u♭∧η(u) , (13)

that is [u♭∧η(u)]αβγδ =
[
2u[α η(u)β ]γδ +2u[γ η(u)δ ]αβ

]
, where the spatial unit

volume 3-form
η(u)αβγ = uδ ηδαβγ (14)

is the only nontrivial spatial field which arises from the splitting of the volume
4-form. Using the spacetime (Hodge) duality operation (∗), one can associate
with any p-form S (with 0 ≤ p ≤ 4) a (4− p)-form. Similarly a spatial duality
operation (∗(u)) is defined for a spatial p-form S (u S = 0) replacing η with
η(u), namely

∗(u)Sα1...α3−p =
1
p!

Sβ1...βpη(u)β1...βp α1...α3−p . (15)

For example, given a spatial 2-form S, its spatial dual is

[∗(u)S]α =
1
2

η(u)αβγ Sβγ . (16)

This operation satisfies the property ∗(u)∗(u)S = S. Let us now consider the split-
ting of ∗S where S is given by (11). We have

∗S = u♭∧ [∗S](E)(u)+ [∗S](M)(u)

= ∗[u♭∧S(E)(u)+S(M)(u)]

= ∗(u)S(E)(u)+ ∗[∗(u) [∗(u) [S(M)(u)]]]

= ∗(u)S(E)(u)+(−1)p−1u♭∧ ∗(u) [S(M)(u)] . (17)

Comparing the first and the last line we have

[∗S](E)(u) = (−1)p−1∗(u) [S(M)(u)], [∗S](M)(u) = ∗(u)S(E)(u) . (18)
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4. Splitting of differential operators
In general relativity one has several spacetime tensorial differential operators
which act on tensor fields. Let us recall them: if T is a tensor field of any rank,
we have

a. The Lie derivative of T along the direction of a given vector field X : [£X T ].

b. The covariant derivative of T : ∇T .

c. The absolute derivative of T along a curve with unit tangent vector X and
parameterized by s: ∇X T ≡ DT/ds.

d. The Fermi-Walker derivative of T along a non-null curve with unit tangent
vector X and parameterized by s defined by

D(fw,X)T α
β

ds
=

DT α
β

ds
±
(
[a(X)∧X ]α γ T γ

β − [a(X)∧X ]γ β T α
γ
)
,

where ± refer to transport along timelike or spacelike curves, respectively.

Finally if S is a p-form, one has

(v) The exterior derivative of S: dS.

Application of the spatial projection into the LRSu of a family of observers u
to the spacetime derivatives (i) to (v), yields new operators which can be more
easily confronted with those defined in a three-dimensional Euclidean space.
Given a tensor field T of components T α...

β ... we have in fact

a. The spatially projected Lie derivative along a vector field X

[£(u)X T ]α...
β ... ≡ P(u)α

σ . . .P(u)ρ
β . . . [£X T ]σ ...

ρ...; (19)

when X = u we use also the notation

∇(u)(lie)T ≡ £(u)uT , (20)

and this operation will be termed “spatial-Lie temporal derivative”.
b. The spatially projected covariant derivative along any eγ frame direction

∇(u)γ T ≡ P(u)∇γ T, (21)

namely

[∇(u)γ T ]α...
β ... = P(u)α

α1 . . .P(u)
β1 β . . .P(u)

σ
γ ∇σ T α1...β1....

c. The spatially projected absolute derivative along a curve with unit tangent
vector X
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[P(u)∇X T ]α ...
β ... = P(u)α

α1 . . .P(u)
β1 β . . . [∇X T ]α1...β1... (22)

d. The spatially projected “Fermi-Walker derivative” along a curve with unit
tangent vector X and parameterized by s[

P(u)
D(fw,X)T

ds

]α ...

β ... = P(u)α
σ . . .P(u)ρ

β . . .

[
D(fw,X)T

ds

]σ ...

ρ... .

e. the spatially projected exterior derivative of a p-form S

d(u)S ≡ P(u)dS, (23)

namely [d(u)S]α1...αpβ = P(u)β1 α1 . . .P(u)
σ

β [dS]β1...σ .

Note that all these spatial differential operators are well defined since they arise
from the spatial projection of spacetime differential operators. From their defi-
nitions it is clear that both the Fermi-Walker and the Lie derivatives of the vector
field u along itself vanish identically (and so do the projections orthogonal to u
of these derivatives). The only derivative of u along itself which is meaningful
being different than zero is the covariant derivative

P(u)∇uu = ∇uu = a(u) . (24)

3 Three-dimensional notation

Let u be a given a family of observers and X a spatial vector with respect to u. It is
then convenient to introduce the 3-dimensional vector notation for the spatial inner
product and the spatial cross product of two spatial vector fields X and Y . The spatial
inner product is defined as

X ·u Y = P(u)αβ XαY β (25)

while the spatial cross product is

[X ×u Y ]α = η(u)α
βγ XβY γ , (26)

where η(u)α
βγ = uσ ησα

βγ as stated.
In terms of the above definitions we can define spatial gradient, curl and diver-

gence operators of functions f and spatial vector fields X as

gradu f = ∇(u) f , curlu X = ∇(u)×u X , divu X = ∇(u) ·u X . (27)

In components these relations read
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[gradu f ]α = ∇(u)α f = P(u)αβ eβ ( f ) ,

[curlu X ]α = η(u)αβγ ∇(u)β Xγ = uσ ησ
αβγ ∇β Xγ ,

[divu X ] = ∇(u)α Xα = P(u)αβ ∇α Xβ . (28)

It is useful to extend the above definitions to

1. the spatial cross product of a vector X by a symmetric tensor A,

[X ×u A]αβ = η(u)γδ (α Xγ Aβ )
δ , (29)

2. the spatial cross product of two symmetric spatial tensors A and B,

[A×u B]α = η(u)αβγ Aβ
δ Bδγ , (30)

3. the spatial inner product of two symmetric spatial tensors A and B,

[A ·u B]α β = Aαγ Bγβ , (31)

4. the trace of the above tensor product

Tr[A ·u B]Aαβ Bαβ , (32)

5. the spatial divergence of a spatial tensor

[divu X ]α ...β = ∇(u)σ Xσα ...β , X = P(u)X . (33)

4 Kinematics of the observer’s congruence

Let us consider now the splitting of the covariant derivative ∇β uα . This operation
generates two spatial fields namely the acceleration vector field a(u) and the kine-
matical tensor field k(u)defined as

a(u) = P(u)∇uu , k(u) =−∇(u)u = ω(u)−θ(u) . (34)

where

[ω(u)]αβ = −P(u)µ
α P(u)ν

β ∇[µ uν ] ,

[θ(u)]αβ = P(u)µ
α P(u)ν

β ∇(µ uν) =
1
2
[£(u)uP(u)]αβ , (35)

are the components of tensor fields ω(u) and θ(u) having the meaning respectively
of vorticity (whose sign depends on convention1) and expansion. From the above
definitions, the tensor field ∇β uα can be written as

1 We have adopted the ∇-convention differently from a ;-convention also widely used.
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∇β uα =−a(u)α uβ − k(u)α
β . (36)

The expansion tensor field θ(u) may itself be decomposed into its trace-free and
pure trace parts

θ(u) = σ(u)+
1
3

Θ(u)P(u) , (37)

where the trace-free tensor field σ(u) (σ(u)α
α = 0) is termed shear and the scalar

Θ(u) = ∇α uα (38)

is termed volumetric (or isotropic) scalar expansion.
Define also the vorticity vector field ω(u) = 1/2 curlu u as the spatial dual of the

spatial rotation tensor, and given by

ω(u)α =
1
2

η(u)αβγ ω(u)βγ =
1
2

ησαβγ uσ ∇β uγ . (39)

Although we use the same symbol for the vorticity tensor and the associated vector
they can be easily distinguished by the context.

5 Adapted frames

Given a field of observers u, a frame {eα} with α = 0,1,2,3 (with dual ωα ) is
termed adapted to u if e0 = u and ea with a = 1,2,3 are orthogonal to u, namely
u · ea = 0. From this it follows that ω0 = −u♭. In this section all indices denote
components relative to the frame {eα}. The evolution of the frame vectors along the
world lines of u is governed by the relations ∇ueα = eσ Γ σ

α0 and one can express
the connection coefficients in terms of the kinematical quantities of the observer
congruence u. The result is the following

Γ a
00 = a(u)a, Γ 0

a0 = a(u)a, Γ b
a0 =C(fw)

b
a,

Γ b
0a =−k(u)b

a, Γ 0
ba =−k(u)ba ,

(40)

where the Fermi-Walker structure functions C(fw)ba are introduced so that

P(u)∇uea =C(fw)
b

aeb . (41)

They can also we written as

C(fw)
b

a =C(lie)
b

a − k(u)b
a , C(lie)

b
a ≡ ωb(£(u)uea) , (42)

implying
P(u)£uea = £(u)uea =C(lie)

b
aeb . (43)
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Similarly, it is straightforward to express the structure functions in terms of kine-
matical quantities. In fact, from the definition

eαCα
βγ = [eβ ,eγ ] = ∇eβ eγ −∇eγ eβ (44)

we have

eαCα
0b = ∇ueb −∇ebu = a(u)bu+[C(fw)

c
b + k(u)c

b]ec

= a(u)bu+C(lie)
c

bec , (45)

so that C0
0b = a(u)b and Cc

0b =C(lie)
c

b. Similarly

eαCα
bc = ∇eb ec −∇eceb = 2ω(u)bcu+2Γ d

[cb]ed , (46)

so that C0
bc = 2ω(u)bc and Cd

bc = 2Γ d
[cb].

Finally, the structure functions satisfy the Jacobi identities which can also be
given a 3+1 form.

5.1 Spatial-Fermi-Walker and spatial-Lie temporal derivatives

We have introduced the Fermi-Walker structure functions C(fw)
b

a,

P(u)∇uea =C(fw)
b

aeb , (47)

as well as the Lie structure functions C(lie)
b

a entering the projected Lie derivative
along u (which we also termed as “spatial-Lie temporal derivative,” see Eq. (20))

£(u)uea = P(u)£uea =C(lie)
b

aeb =Cb
0aeb . (48)

It is then useful to handle both these operations with a unified notation [1]

∇(u)(tem)ea =C(tem)
b

aeb , tem=fw, lie, (49)

where we define

∇(u)(fw)ea ≡ P(u)∇uea, ∇(u)(lie)ea ≡ P(u)£uea = £(u)uea. (50)

Therefore if X is a vector field orthogonal to u, i.e. X ·u = 0, we have

∇(u)(tem)X = ∇(u)(tem)(X
aea) =

dXa

dτu
ea +XaC(tem)

b
aeb

=

(
dXb

dτu
+XaC(tem)

b
a

)
eb = (∇(u)(tem)X

b)eb . (51)
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The operation ∇(u)(fw) = P(u)∇u is termed “spatial-Fermi-Walker temporal deriva-
tive.” It can be extended to non-spatial fields. If we apply this operation to the vector
field u itself we have

∇(u)(fw)u = P(u)∇uu = a(u) . (52)

Hence the temporal derivatives so defined through their action on purely spatial and
purely temporal fields can now act on any spacetime field.

5.2 Frame components of the Riemann tensor

From the definition

eα Rα
βγδ = [∇eγ ,∇eδ ]eβ −Cσ

γδ ∇eσ eβ , (53)

we have

eα Rα
0b0 = [∇eb ,∇u]u−Cσ

b0∇eσ u (54)

=
{
[∇(u)b +a(u)b]a(u)c +∇(u)(fw)k(u)

c
b − [k(u)2]cb

}
ec ,

so that

Rc
0b0 = [∇(u)b +a(u)b]a(u)c +∇(u)(fw)k(u)

c
b − [k(u)2]cb , (55)

where

∇(u)(fw)k(u)
c

b = ∇uk(u)c
b +C(fw)

c
f k(u) f

b −C(fw)
f
bk(u)c

f . (56)

Similarly one obtains

R0
bcd =−2[∇(u)[ck(u)|b|d]+ω(u)cda(u)b] (57)

and

R f
bcd = R(fw)

f
bcd −2k(u)b[ck(u) f

d] , (58)

where

R(fw)
f
bcd = 2e[c

(
Γ f

|b|d]
)
+2Γ s

b[cΓ f
|s|d]−Cs

cdΓ f
bs

−2ω(u)cdC(fw)
f
b . (59)

This tensor is termed “Fermi-Walker spatial Riemann tensor”2; it can be written in
invariant form as follows

2 A Lie spatial Riemann tensor can be defined similarly, replacing the Fermi-Walker structure
functions C(fw)

f
b with the corresponding Lie structure functions C(lie)

f
b according to Eq. (42).
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R(fw)(u)(X ,Y )Z = {[∇(u)X ,∇(u)Y ]Z −∇(u)[X ,Y ]}Z

−2ω(u)(X ,Y )∇(u)(fw)Z , (60)

where X , Y and Z are spatial fields with respect to u and we note that

[X ,Y ] = P(u)[X ,Y ]−2ω♭(X ,Y )u . (61)

The Fermi-Walker spatial Riemann tensor has not all the symmetries of a three
dimensional Riemann tensor. For instance it does not satisfy the Ricci identities. In
fact we have

0 = R f
[bcd] = R(fw)

f
[bcd]−2k(u)[bck(u) f

d] , (62)

and hence
R(fw)

f
[bcd] = 2k(u) f

[bω(u)cd] . (63)

From the latter one can construct a new Riemann tensor with all the necessary sym-
metries. Ferrarese [2] has shown that the symmetry-obeying Riemann tensor, de-
noted as R(sym)

ab
cd , is related to the Fermi-Walker Riemann tensor (60) by

R(sym)
ab

cd = R(fw)
ab

cd −2ω(u)abω(u)cd −4θ(u)[a[cω(u)b]
d]

= Rab
cd +2k(u)b

[ck(u)a
d]−2ω(u)abω(u)cd

−4θ(u)[a[cω(u)b]
d] . (64)

Together with the spatial symmetric Riemann tensor R(sym)
ab

cd we also introduce
the spatial symmetric Ricci tensor, R(sym)

a
b =R(sym)

ca
cb as well as the the associated

scalar R(sym) = R(sym)
a

a.

6 Comparing families of observers

Let u and U be two unitary timelike vector fields. Define the relative spatial velocity
of U with respect to u from the splitting relations

U = γ(U,u)[u+ν(U,u)] = γ(U,u)[u+ ||ν(U,u)||ν̂(U,u)] , (65)

and

u = γ(u,U)[U +ν(u,U)] = γ(u,U)[U + ||ν(u,U)||ν̂(u,U)] . (66)

where ν̂(U,u) is the unitary vector giving the direction of ν(U,u) in the rest frame
of u. Both the spatial relative velocity vectors have the same magnitude

||ν(U,u)||= [ν(U,u)α ν(U,u)α ]1/2 = [ν(u,U)α ν(u,U)α ]1/2.
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The common gamma factor is related to that magnitude by

γ(U,u) = γ(u,U) = [1−||ν(U,u)||2]−1/2 =−Uα uα (67)

hence we recognize it as the relative Lorentz factor. It is convenient to abbreviate
γ(U,u) by γ and ||ν(U,u|| by ν when their meaning is clear from the context and
there are no more than two observers involved.

Let us notice here that by substituting Eq. (65) into Eq. (66) we obtain the fol-
lowing relation

−ν̂(u,U) = γ[ν̂(U,u)+νu] , (68)

which together with U = γ[u+νν̂(U,u)] yields the relative boost B(U,u) from u to
U , namely

B(U,u)u = U = γ[u+νν̂(U,u)]

B(U,u)ν̂(U,u) = −ν̂(u,U) = γ[ν̂(U,u)+νu] . (69)

The inverse relations hold by interchanging U with u. The boost acts as the identity
on the intersection of their local rest spaces LRSu ∩LRSU .

1. Maps between LRSs
The spatial measurements of two observers in relative motion can be compared
only relating their respective LRSs. Let U and u be two such observers and
LRSU and LRSu their LRSs. There exists several maps between these LRSs; for
example, by combining the projection operators P(U) and P(u) one can form
the following “mixed projection” maps:

a. P(U,u) from the LRSu into LRSU , defined as

P(U,u) = P(U)P(u) : LRSu → LRSU , (70)

with inverse: P(U,u)−1 : LRSU → LRSu;
b. P(u,U) from the LRSU into LRSu, defined as

P(u,U) = P(u)P(U) : LRSU → LRSu , (71)

with inverse: P(u,U)−1 : LRSu → LRSU .

Note that P(U,u) ̸= P(u,U)−1 as it follows from their representations

P(U,u) = P(u)+ γνU ⊗ ν̂(U,u) ,

P(U,u)−1 = P(U)+νU ⊗ ν̂(u,U) ,

P(u,U) = P(U)+ γνu⊗ ν̂(u,U) ,

P(u,U)−1 = P(u)+νu⊗ ν̂(U,u) . (72)

One can then show that
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P(U,u)ν̂(U,u) = −γν̂(u,U) ,

P(u,U)−1ν̂(U,u) = −1
γ

ν̂(u,U) . (73)

Note that

P(U,u) = P(U) P(u) = P(U) P(U,u) = P(U,u) P(u) . (74)

Moreover the following relations hold

P(U) = P(U,u) P(U,u)−1 , P(u) = P(U,u)−1 P(U,u) . (75)

2. The boost maps
Similarly to what we have done combining the projection maps, also the boost
B(U,u) induces an invertible map between the local rest spaces of the given
observers defined as

B(lrs)(U,u)≡ P(U)B(U,u)P(u) : LRSu → LRSU . (76)

It acts as the identity on the intersection of their subspaces LRSU ∩LSRu. Being
the boost an isometry, exchanging the role of U and u in (76) leads to the inverse
boost

B(lrs)(U,u)−1 ≡ B(lrs)(u,U) : LRSU → LRSu. (77)

The representations of the boost and its inverse can be given in terms of the
associated tensors

B(lrs)u(U,u) , B(lrs)U (U,u) , B(lrs)u(u,U) , B(lrs)U (u,U), (78)

defined by:

B(lrs)u(U,u) = P(U,u)−1 B(lrs)(U,u) ,

B(lrs)U (U,u) = B(lrs)(U,u) P(U,u)−1, (79)

with the corresponding expressions for the inverse boost obtained simply by
exchanging the role of U and u and with

B(lrs)(U,u) = B(lrs)U (U,u) P(U,u) = P(U,u) B(lrs)u(U,u) . (80)

The explicit expression of B(lrs)u(U,u), for example, is given by

B(lrs)u(U,u) = P(u)+
1− γ

γ
ν̂(U,u)⊗ ν̂(U,u). (81)

This can be shown as follows. Let X ∈ LRSu then
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B(lrs)u(U,u)X = P(U,u)−1[B(lrs)(U,u)X ]

= P(U,u)−1[B(lrs)(U,u)X ||ν̂(U,u)+X⊥], (82)

where X || = X · ν̂(U,u) and X⊥ = X −X || ν̂(U,u), that is

X = X || ν̂(U,u)+X⊥ , (83)

and we have used the fact that the boost reduces to the identity for vectors not
belonging to the boost plane, as X⊥. In this case the boost plane is spanned by
the vectors u and ν̂(U,u). Taking into account (69), namely

B(lrs)(U,u)ν̂(U,u) =−ν̂(u,U), (84)

as well as the linearity of the boost map, we have

B(lrs)u(U,u)X = P(U,u)−1[X −X ||ν̂(u,U)−X ||ν̂(U,u)]

= X +
1− γ

γ
X ||ν̂(U,u), (85)

where P(U,u)−1X = X because X ∈ LRSu:

P(U,u)−1X = P(U,u)−1P(u)X = P(U,u)−1P(U)P(u)X

= P(U,u)−1P(U,u)X = P(u)X = X ; (86)

hence P(U,u)−1ν̂(U,u) = ν̂(U,u) because ν(U,u) belongs to LRSu. Moreover,
from (73), by exchanging the roles of U and u, we find

P(U,u)−1ν̂(u,U) = −1
γ

ν̂(U,u) =
1
γ

B(u,U)ν̂(u,U)

=
1
γ

B(U,u)−1ν̂(u,U). (87)

Therefore:

B(lrs)u(U,u)X = X −X ||
(
−1

γ
+1
)

ν̂(U,u)

=

[
P(u)− γ −1

γ
ν̂(U,u)⊗ ν̂(U,u)♭

]
X (88)

which is equivalent to (81).
Similarly, for the inverse boost B(lrs)(u,U) one has

B(lrs)u(u,U) = P(u)− γ −1
γ

ν̂(U,u)⊗ ν̂(U,u)♭ ,

B(lrs)U (u,U) = P(U)− γ −1
γ

ν̂(u,U)⊗ ν̂(u,U)♭ . (89)
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Thus, if S is a vector field such that S ∈ LRSU , then its inverse boost is the vector
belonging to LRSu

B(lrs)(u,U)S = [P(u)− γ(γ +1)−1ν(U,u)⊗ν(U,u)♭] P(u,U)S . (90)

7 Splitting of derivatives along a timelike curve

Consider a congruence of curves CU with tangent vector field U and proper time τU
as parameter. We know, at this stage, that the evolution along CU of any tensor field
can be specified by one of the following spacetime derivatives:

1. the absolute derivative along CU : D/dτU = ∇U ,
2. the Fermi-Walker derivative along CU : D(fw,U)/dτU ,
3. the spacetime Lie derivative along CU : £U , for which we use also the notation

D(lie,U)/dτU = £U .

The action of the Fermi-Walker and Lie derivatives on a vector field X is related to
the absolute derivative as follows

D(fw,U)X
dτU

= ∇U X +a(U)(U ·X)−U(a(U) ·X)

= P(U)∇U X −U∇U (X ·U)+a(U)(X ·U) ,

D(lie,U)X
dτU

= [U,X ] = ∇U X +a(U)(U ·X)− k(U) X , (91)

where k(U) = ω(U)−θ(U) is the kinematical tensor of the congruence CU defined
in (34). For X =U we have

D(fw,U)U
dτU

= 0 ,
D(lie,U)U

dτU
= 0 , (92)

whereas DU/dτU = a(U).
If X is spatial with respect to U , namely X ·U = 0, we have instead

D
(fw,U)

X

dτU
= P(U)∇U X

D
(lie,U)

X

dτU
= ∇U X − k(U) X

= P(U)∇U X −U(a(U) ·X)− k(U) X . (93)

The projection orthogonal to U of D(lie,U)X/dτU as in (93) gives

P(U)
D(lie,U)X

dτU
=

D(fw,U)

dτU
X − k(U) X . (94)
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Let u be another family of observers whose world lines have as parameter the proper
time τu. One can introduce on the congruence CU whose unit tangent vector field
can be written as

U = γ(U,u)[u+ν(U,u)] , (95)

two new parametrizations τ(U,u) and ℓ(U,u) as follows

dτ(U,u)

dτU
= γ(U,u) ,

dℓ(U,u)

dτU
= γ(U,u)||ν(U,u)|| , (96)

where τ(U,u) corresponds to the proper times of the observers u when their curves
are crossed by a given curve of CU and ℓ(U,u) corresponds to the proper length on
CU . The projection orthogonal to u of the absolute derivative along U is expressed
by

P(u)
D

dτU
= P(u)∇U = γ[P(u)∇u +P(u)∇ν(U,u)]

= γ[P(u)∇u +∇(u)ν(U,u)] . (97)

We note that in the above equation the derivative operation P(u)∇u is just what we
have termed spatial-Fermi-Walker temporal derivative, i.e. ∇(u)(fw), in (50). For a
vector field X we can write then

P(u)
D(fw,U)X

dτU
≡

D(fw,U,u)X
dτU

= P(u)
DX
dτU

+P(u,U)a(U)(U ·X)

−γν(U,u)(a(U) ·X) , (98)

P(u)
D(lie,U)X

dτU
≡

D(lie,U,u)X
dτU

= P(u)
DX
dτU

+P(u,U)a(U)(U ·X)

−P(u)[k(U) X ] . (99)

We shall now examine the projected absolute derivative in detail.

7.1 Projected absolute derivative

Consider the absolute derivative of u along U , namely ∇U u. Since u is unitary, then
u ·Du/dτU = 0 and we can write
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Du
dτU

= P(u)
Du
dτU

= γ[P(u)∇uu+P(u)∇ν(U,u)u]

= γ[∇(u)(fw)u+P(u)∇ν(U,u)u]

= γ[a(u)+ω(u)×u ν(U,u)+θ(u) ν(U,u)] . (100)

Let us denote the above quantity as (minus) Fermi-Walker gravitational force,
namely

F(G)
(fw,U,u) =− Du

dτU
=−γ[a(u)+ω(u)×u ν(U,u)+θ(u) ν(U,u)] .

It should be stressed here that, although F(G)
(fw,U,u) is referred to as a gravitational

force, it contains contributions by true gravity and by inertial forces.
Consider now the case of X orthogonal to u, i.e. X · u = 0. The projection onto

LRSu of the absolute derivative of X along U gives

P(u)
DX
dτU

= γ[P(u)∇uX +∇(u)ν(U,u)X ]≡
D(fw,U,u)X

dτU
. (101)

This differential operator plays an important role since both Fermi-Walker and Lie
derivatives along U can be expressed in terms of it. In terms of (adapted) frame
components the above expression reads

P(u)
DX
dτU

=

{
dXb

dτU
+ γ
[
Xa
(

C(fw)
b

a +ν(U,u)c Γ b
ac

)]}
eb , (102)

where we set X = Xaea. Introducing the relative standard time parametrization
τ(U,u) defined in (96), we have

P(u)
DX

dτ(U,u)
=

D(fw,U,u)X
dτ(U,u)

=

(
D(fw,U,u)X

dτ(U,u)

)a

ea (103)

or in components(
D(fw,U,u)X

dτ(U,u)

)b

=
dXb

dτ(U,u)
+Xa

(
C(fw)

b
a +ν(U,u)cΓ (u)b

ac

)
. (104)

A particular vector field which is orthogonal to u and is defined all along CU is the
field of relative velocities, ν(U,u). We introduce the acceleration of U relative to u
by

a(fw,U,u) =
D(fw,U,u)

dτ(U,u)
ν(U,u) = γP(u)

D
dτU

ν(U,u) . (105)

Considering instead the unit vector ν̂(U,u), this quantity can be written as
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a(fw,U,u) = P(u)
D

dτ(U,u)
[νν̂(U,u)] , (106)

where ν = ||ν(U,u)||. Finally we have

a(fw,U,u) = ν̂(U,u)
dν

dτ(U,u)
+νP(u)

D
dτ(U,u)

ν̂(U,u) . (107)

It is therefore quite natural to denote the first term as a tangential Fermi-Walker
acceleration, a(T )

(fw,U,u) of U relative to u and the second as centripetal Fermi-Walker

acceleration a(C)
(fw,U,u) of U relative to u:

a(fw,U,u) = a(T )
(fw,U,u)+a(C)

(fw,U,u) , (108)

where

a(T )
(fw,U,u) = ν̂(U,u)

dν
dτ(U,u)

,

a(C)
(fw,U,u) = ν P(u)

D
dτ(U,u)

ν̂(U,u) = ν
D(fw,U,u)

dτ(U,u)
ν̂(U,u). (109)

To generalize the classical mechanics notion of centripetal acceleration we need to
convert the relative standard time parametrization into an analogous relative stan-
dard length parametrization3:

dℓ(U,u) = νdτ(U,u). (110)

With this parametrization we have

a(C)
(fw,U,u) = ν2P(u)

D
dℓ(U,u)

ν̂(U,u) = ν
D(fw,U,u)

dτ(U,u)
ν̂(U,u)

=
ν2

R(fw,U,u)
η̂(fw,U,u) = ν2k(fw,U,u)η̂(fw,U,u) , (111)

where η̂(fw,U,u) is a unit spacelike vector orthogonal to ν̂(U,u), k(fw,U,u) is the Fermi-
Walker relative curvature and R(fw,U,u) is the curvature radius of the curve such that

k(fw,U,u)η̂(fw,U,u) =
η̂(fw,U,u)

R(fw,U,u)
= P(u)

D
dℓ(U,u)

ν̂(U,u). (112)

Clearly, if geometrically or physically motivated, one can replace the Spatial-Fermi-
Walker temporal derivative with the Spatial-Lie temporal derivative defining the cor-
responding quantities. Doing this one really understands the power of the notation

3 In fact the Euclidean space definition involves spatial orbits parameterized by the (spatial) curvi-
linear abscissa.
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used. For example and for later use one can define Lie relative curvature of a curve
and the associated curvature radius

k(lie,U,u)η̂(lie,U,u) =
η̂(lie,U,u)

R(lie,U,u)
=

D
(lie,U,u)

dℓ(U,u)
ν̂(U,u). (113)

Difficult to think of other efficient relativistic generalizations of the classical con-
cepts of inertial forces besides this one.

8 Preferred slicing is spacetimes admitting separable geodesics

After providing the general framework of spacetime splitting techniques let us
briefly review now some recent results concerning the existence of preferred slicing
in those spacetimes admitting separable geodesics (see [7] and references therein).

Let the coordinates xα (α = 0 . . .3, with x0 = t) be such that the geodesic
equations are separable in the metric ds2 = gαβ dxα dxβ . Using the Hamilton-
Jacobi formalism we can write the tangent vector Uα = dxα(λ )/dλ to the affinely
parametrized timelike geodesics as the gradient of the fundamental action function
S = S(xα ,λ ), Uα = ∂α S, satisfying the Hamilton-Jacobi equation

− ∂S
∂λ

= H(xα ,∂α S) , (114)

with λ an affine parameter for the integral curves of U and the Hamiltonian

H =
1
2

gαβ ∂α S∂β S =−1
2

µ2 = const , (115)

the latter identity following from the normalization condition UαUα = −µ2 for
timelike geodesics. Assume that S can be separated in its dependence on the vari-
ables xα and λ , namely

S =
1
2

µ2λ +St(t)+S1(x1)+S2(x2)+S3(x3) . (116)

Thus we have for the 1-form U ♭ ≡ Uα dxα = ∂α Sdxα = d(S− 1
2 µ2λ ), where here

d stands for the spacetime differential only. Moreover, since in this case U is a
gradient it is also necessarily vorticity-free: dU ♭ = 0, and there exists a distribution
of constant action hypersurfaces T ≡−S+ 1

2 µ2λ = const with

−dT =Uα dxα , (117)

such that Uα is the associated unit normal vector field. When one sets µ = 1, then the
time function T measures the proper time along the geodesics and the corresponding
lapse function has the fixed value N = 1. For a stationary spacetime in which t is
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taken to be a Killing time coordinate, then Ut = −E is a constant interpreted as a
conserved energy, with St(t) = −Et, and the metric is independent of t. One then
has

−dT =−Edt +Uadxa . (118)

8.1 Static spherically symmetric spacetimes

Consider the case of static spherically symmetric spacetimes. The metric written in
standard spherical-like coordinates is

ds2 =−eν dt2 + eλ dr2 + r2(dθ 2 + sin2 θdϕ 2) , (119)

where the functions ν and λ depend only on the radial coordinate. Then L =Uϕ is
an additional Killing constant associated with the conserved angular momentum so

Uα dxα =−Edt +(∂rSr)dr+(∂θ Sθ )dθ +Ldϕ , (120)

and the corresponding Hamilton-Jacobi equation

−e−ν E2 + e−λ (∂rSr)
2 +

1
r2

[
(∂θ Sθ )

2 +
L2

sin2 θ

]
=−µ2 (121)

can be easily separated in its dependence on the coordinates by setting the square
bracket expression to a separation constant K , leading to

dSr

dr
= εreλ/2

√
E2e−ν − K +µ2r2

r2 ,
dSθ
dθ

= εθ

√
K − L2

sin2 θ
, (122)

where |εr|= 1 = |εθ |.
As stated above, we can set µ = 1 to characterize a new foliation by a new tempo-

ral coordinate T measuring proper time along the orthogonal geodesics. We are left
to specify E, L, and K to obtain a specific family of timelike geodesics covering the
spacetime. The simplest choice would be a spherically symmetric 4-velocity field
involving only radial motion of the geodesics relative to the original coordinates.
We can achieve this in two steps. First we can require that this family of geodesics
be tangent to the equatorial plane θ = π/2, which requires K = L2 to make Uθ = 0,
resulting in

U2
r = eλ−ν

[
E2 − eν

(
1+

L2

r2

)]
. (123)

We then impose the radial condition L = 0, so that

Ur = εre(λ−ν)/2
√

E2 − eν , (124)
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leaving finally the choice of the energy constant E. For spatially asymptotically flat
spacetimes where eν < 1 approaches 1 as r → ∞, to have a choice which works even
at spatial infinity, we must have E ≥ 1, in which case the value may be interpreted
as the energy of the radially moving geodesics at spatial infinity. Of course one
could choose E < 1 but this would limit the slicing to the interior of a cylinder in
spacetime inside the radial turning point of the geodesic motion.

The new time differential is then

dT = Edt −Ur dr . (125)

A new global coordinate system for static spacetimes is given by (Xα) = (T,R,θ ,ϕ)
with R = r and θ and ϕ unchanged and T = Et + f (r) given by integrating the
differential equation f ′(r) =−Ur. This leads to

∂T = E−1∂t , ∂R = ∂r +
Ur

E
∂t , (126)

and the transformed metric is

ds2 =−dT 2 + γab(dXa +NadT )(dXb +NbdT ) , (127)

with unit lapse function and the shift vector field aligned with the new radial direc-
tion, i.e.,

Na =−δ a
RU r =−δ a

Re−λUr =−δ a
Rεre−(λ+ν)/2

√
E2 − eν . (128)

The 3-metric induced on the T = const hypersurfaces is then given by

(3)ds2 =
eλ+ν

E2 dr2 + r2(dθ 2 + sin2 θdϕ 2) . (129)

In the case of vacuum as well as in the presence of a nonzero cosmological con-
stant one has λ +ν = 0, so that the induced metric is then

(3)ds2 =
dr2

E2 + r2(dθ 2 + sin2 θdϕ 2) , (130)

whose only nonvanishing component of the spatial Riemann curvature tensor and
the spatial curvature scalar are

(3)Rθϕ
θϕ =

1−E2

r2 =
1
2
(3)R , (131)

with positive or negative curvature respectively for 0 < E < 1 (bound geodesics)
or E > 1 (unbound geodesics). The choice E = 1 leads to a flat 3-geometry. The
additional sign choice εr =−1 corresponds to the radially infalling geodesics which
start at rest at spatial infinity. This is the case for the Schwarzschild spacetime where
the Painlevé-Gullstrand coordinates were originally found [8, 9].
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9 Discussion

The results summarized above have been developed over a period of about 20 years
(starting from the 90s), initially motivated by the necessity to correctly define iner-
tial forces in general relativity. As a consequence, the whole “measurement process”
was reformulated, paying much attention to involve only quantities with a clear ge-
ometrical and physical meaning.

Actually, the relativistic generalization of well known classical quantities neces-
sitated the introduction of the so called observer’s viewpoint and, formally, the sys-
tematic use of “1+3” spacetime splitting techniques. Relative Frenet-Serret frames,
for instance, were perhaps the most suited tools to explain how inertial forces could
enter the general relativistic dynamics of test particles, in full similarity with the
classical situation.

A lot of progress in this field (which was not at all a newborn field) was possible
because of the international competition started in analyzing explicit applications of
formalism to test particle motion in black hole spacetimes. The original enthusiasm
was swept away when a satisfactory understanding of the problem was obtained.
Nevertheless, many aspects of the formalism developed in this field may be ex-
ported in different contexts and hence one should wait for another wave of splitting
formalism when new applications will be taken into account.
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