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Abstract What should be the quasinormal modes associated with a spacetime that
contains a naked singularity instead of a black hole? In the present work we address
this problem by studying the scattering of scalar fields on a curved background
described by a Reissner-Nordström spacetime with q > m. We show that there is a
qualitative difference between cases with 1 < q2/m2 ≲ 9/8 and cases with q2/m2 ≳
9/8. We discuss the necessary conditions for the well-posedness of the problem, and
present results for the low l and large l limit.

1 Introduction

The naked Reissner-Nordström (R-N) singularity is a classical general relativistic
solution in electrovacuum. The solution is expected to have a very limited meaning,
due to the fact that such singularities cannot be created neither by a gravitational
collapse, nor by dropping a charge into the black hole. (By weak cosmic censor-
ship conjecture general naked singularities should be prohibited in general theory
of relativity, although there are indications that by including quantum effects the
violations of the conjecture could be considered [1].) Moreover, a naked singularity
created from some exotic initial data conditions should become quickly neutralized
(classically, or via quantum pair production). Some results also indicate that if one
considers electro-gravitational perturbations the R-N naked singularity becomes lin-
early unstable [2]. However it was discovered that the scalar field scattering problem
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on such a singular background can be still well defined [3, 4, 5, 6, 7, 8], since the
waves remain regular at the origin. Despite of this nice property of the scattering
problem, the spacetime is non-globally hyperbolic and the time evolution of the
fields is not unique [9, 10]. This means one has to specify additional boundary con-
dition at the singularity to obtain a fully unique time evolution. Another way of
seeing the problem is through the language of operators: one can understand the
spatial part of the wave operator to be a positive symmetric operator acting on a L2

Hilbert space, and then obtain the scalar field dynamics through a suitable positive
self-adjoint extension of such a symmetric operator [3, 4]. (One “preferred” way in
which such a self-adjoint extension can be always realized is through the so called
Friedrich’s extension [3], which will also be the case of this paper.) Anyway, after
uniquely specifying the dynamics, one should be able to characterize the scattering
by a set of characteristic oscillations, the quasi-normal modes.

Low damped quasi-normal modes are in general used as a possible source of in-
formation about potential astrophysical objects (such as neutron stars, black holes),
the highly damped modes are potentially interesting from the point of view of quan-
tum gravity. Since a lot of work was devoted to the problem of quasinormal modes
of the Reissner-Nordström black hole, it might be interesting to observe what hap-
pens if one transits from the R-N black hole case to the R-N naked singularity case
(with a reflective boundary condition). Information about “what happens” shows
how many features of the quasi-normal modes of the black hole spacetimes are spe-
cific to the black holes themselves and what features survive much more general
conditions. Thus, briefly, we hope that despite of the fact that most likely the R-N
naked singularity model does not correspond to a realistic physical situation, there
are still many interesting things one can learn from such a model. One of them is
a question that we want to answer in the present paper, in particular what will be
the behaviour of the low damped quasinormal modes when departing from the R-N
black hole to the R-N naked singularity.

2 The time evolution problem for a scalar field in the R-N naked
singularity

In this section we will follow the standard analysis of the scalar field evolution
in a curved background. (As an example of such an analysis see the treatment of
Schwarzschild black hole perturbations in [11, 12]. For a review that presents also
such techniques see for example [13].) Take the Klein-Gordon equation for the com-
plex (charged) scalar field:

1√
−g

∂µ(
√
−g gµν ∂νΨ) = 0, (1)

with the metric line element given as
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gµν dxµ dxν =− f (r)dt2 + f (r)−1dr2 + r2dΩ 2. (2)

For the Reissner-Nordström (R-N) singularity the function f (r) is in Planck units
given as:

f (r) = 1− 2m
r

+
q2

r2 , (q2 > m2). (3)

Take the decomposition of the field into the spherical harmonics

Ψ(t,r,θ ,ϕ) = ∑
l,m

ψl(t,r)Yml(θ ,ϕ). (4)

After we separate the variables we obtain the following reduced equation

d2ψl(t,r)
dt2 =

f (r)
r2

d
dr

[
r2 f (r)

dψl(t,r)
dr

]
− l(l +1) f (r)

r2 ψl(t,r). (5)

The unique solution of the given initial data problem is obtained if the condition
of boundedness of the Green’s function leads to a unique way to construct Green’s
function from the two linerly independent solutions Ul1,Ul2 of the homogeneous
equation associated to (5). Unfortunately for the case of R-N naked singularity both
of the linearly independent solutions Ul1,Ul2 are regular at 0 and the problem is
underdetermined.

Is there any intuitive physical condition that we can further impose on the fields,
that will uniquely select the appropriate Green’s function? At least to get the ge-
ometrical optics continuous extension of the black hole case one can impose the
condition that nothing falls in or out of the singularity. This means there is neither
absorption nor superradiation in the scattering and the S-matrix of the K-G field is
a unitary operator.

Further in the text we will employ the field vanishing condition at 0. (This bound-
ary condition at the singularity corresponds to what is known as Friedrich’s ex-
tension of a symmetric operator.) Thus the quasinormal modes will relate to the
scattering problem following from the time evolution determined by the boundary
condition ψ(0, t) = 0 [14].

3 The scalar wave scattering on a naked singularity

Using ϕl defined as ϕl(r, t) = rψl(r, t) and x the tortoise coordinate given by the
condition:

dr
dx

= f (r), (6)

one can rewrite the equation (5) into the following form

∂ 2ϕl(x, t)
∂ t2 − ∂ 2ϕl(x, t)

∂x2 =V (m,q, l,x)ϕl(x, t), (7)
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with

V (m,q, l,x) =
[

l(l +1)
r2(x)

+
2m

r3(x)
− 2q2

r4(x)

]
f
(
r(x)

)
. (8)

And, for the normal modes e−iωtϕl(r), we can write

∂ 2ϕl(x)
∂x2 +

[
ω2 −V (m,q, l,x)

]
ϕl(x) = 0. (9)

If q > m , we can see that f (r) given by eq. (3) has no zeros for real arguments,
but eq. (6) can be analytically integrated.

The potential (8) has for the ratio q2/m2 less than approximately 9/8 and the
relevant x (in the naked singularity case the domain of x is constrained) 3 extrema,
one smaller “outer” maximum, one dominant “inner” maximum and minimum in
the potential valley between them. (For r → 0 the function V (r)→−∞.) For q2/m2

more than approximately 9/8 the potential has only one maximum (thus only one
peak). These features of the potential (8) can be seen in the figure 1.

Fig. 1 Potential V (r) given
by eq. (8) with l = 2, m = 0.5
for q = 0.48,0.5,0.52,0.54
and 0.56. (The curves from
left to right correspond to
the increase of charge.) Note
that the dashed part of the
potential (for q = 0.48 and
0.5) is inside the black hole
horizon.
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4 The naked singularity for the small wave mode numbers -
numerical results for the frequencies

Our objective in this section is to solve eq. (7) with potential (8) numerically, in the
case where q > m as described in the last section. To do this, we rewrite eq. (7) in
terms of the light-cone variables u = t − x and v = t + x, where x corresponds to the
tortoise coordinate (6), as

∂ 2ϕ
∂ t2 − ∂ 2ϕ

∂x2 =−4
∂ 2ϕ

∂u∂v
=V (r)ϕ , (10)
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that can be integrated with the boundary conditions

ϕ(r = 0, t) = ϕ(u,v = u+2x0) = 0 , (11)

ϕ(u = 0,v) = e−
(v−vc)2

2σ2 , (12)

where condition (11) is a necessary condition on the field ϕ near the origin (see the
discussion on fig. 2 below) and condition (12) defines an “arbitrary” relevant initial
signal to be propagated. We use the algorithm

ϕN = ϕW +ϕE −ϕS −
ϕW +ϕE

8
V ∆v∆u , (13)

where ∆u and ∆v are the integration steps in u and v, respectively. Note that here V
is the potential (8) evaluated at the same r coordinate as ϕS (and ϕN).

As we can see in fig. 2, the boundary conditions (11) and (12) ensure the neces-
sary conditions on the fields ϕ and ψ near the center. As we discussed previously in
section 2, the physically correct boundary condition for ψ is ψ(0, t) = 0. From this
we must have for ϕ(r, t) = rψ(r, t) that ϕ(0, t) = 0 and ϕ ′(0, t) = 0.
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Fig. 2 Left: Behavior of ϕ with l = 2 as a function of r near the center r = 0 for a late time
tF = 350, shown here in order to exemplify the effect of conditions (11) and (12) in the numerical
integration, for a spacetime with q = 0.5 and q = 0.52. Right: The same as in the left plot, but this
time for the function ψ = ϕ/r.

In the left plot of fig. 3 we present some typical time evolutions of ϕ , for a l = 2
and different q/m ratios. In the right plot we present the obtained frequencies of
the QNMs (fundamental mode) in the ωR ×ωI plane. We can see a discontinuity in
the frequencies as q/m → 1, as was expected from the discussion of the potential
V (r) (see fig. 1). We also point here that we see no significant changes, but rather a
smooth behavior as q2/m2 → 9/8 (q/m → 1.06 in the plot). But we see a point of
inflection in ωR at q/m ≈ 1.16, for which we did not find an analytical explanation.

Finally, in fig. 4 we explore how the frequencies of the QNMs change with l.
As usual in black hole scattering problems, we see that the oscillation frequency
ωR increases with l. But the qualitative behaviour of ωI changes significantly with
q/m. In the upper plots (q2/m2 ≲ 9/8), |ωI | decreases with l, that is, the damping
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Fig. 3 Left: ϕ(xF , t) with l = 2 at xF = 100 for a spacetime with m = 0.5 and different values of
q > m. Right: Frequencies of the fundamental mode with l = 2 in the ωR ×ωI plane, parametrized
by the q/m ration.

time is longer. In the lower plots (q2/m2 ≳ 9/8), we have the opposite tendency.
This behaviour is connected to the potential V (r). It might be also interesting to
mention that in case q2/m2 ≳ 9/8, there is a qualitative similarity in the behaviour
of the imaginary part of the frequencies as a function of l, between the case when l
is small and the l large limit.
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Fig. 4 Above: frequencies of the fundamental mode as a function of l for m = 0.5 and q = 0.52
(q2/m2 < 9/8). Below: same as above, but this time for m = 0.5 and q = 0.6 (q2/m2 > 9/8).
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5 Conclusions

In this paper we analysed the problem of scalar field scattering on a R-N naked sin-
gularity background from the point of view of quasi-normal modes. The evolution
on the R-N naked singularity is non-unique unless one specifies additional bound-
ary condition representing a “hair” of the singularity. The quasi-normal modes then
carry information about the “hair”. We applied a particular boundary condition, that
nothing comes out, or in from the singularity and analysed analytically, as well
as numerically, the characteristic oscillations of the scalar field perturbations (low
damped quasi-normal modes). In [14] we also analysed the eikonal l ≫ 1 case via
the analytical approach confirming the intuition obtained through the massless parti-
cle viewpoint, and showed that an approach based on analytical approximations can
be useful also for the small l wave mode numbers. For the small l-s we calculated
the frequencies numerically via the characteristic integration method.

The basic results can be summarized as follows: for the large l there is a contin-
uous transition in the low damped QNM modes between the R-N black hole and the
R-N naked singularity (see [14]). However, when the ratio q2/m2 becomes larger
than approximately 9/8 then the picture becomes significantly different and the low
damped modes do not exist for large l-s. (This is a very different picture from the
BH based intuition.) For the small l numbers the modes face a discontinuous transi-
tion when transiting from the black hole to the naked singularity. Furthermore, the l
dependence |ωI | (for small l) changes as q2/m2 becomes larger than approximately
9/8: |ωI | decreases for q2/m2 ≲ 9/8 and increases for q2/m2 ≳ 9/8. It might be
interesting to notice that for q2/m2 ≳ 9/8 the increase of |ωI | as a function of l (for
small l-s) matches the behaviour of |ωI | for large l-s. In the case of large l-s and
q2/m2 ≳ 9/8 we have shown that |ωI | of the fundamental mode grows at least cubi-
cally with l and thus, as we already mentioned, the low damped modes do not exist
[14].
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