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Abstract In this contribution we consider the issue of singularity resolution within
loop quantum cosmology (LQC) for different homogeneous models. We present
results of numerical evolutions of effective equations for both isotropic as well as
anisotropic cosmologies, with and without spatial curvature. To address the issue
of singularity resolution we examine geometrical and curvature invariants that yield
information about the spacetime geometry. We discuss generic behavior found for a
variety of initial conditions.

1 Introduction

In general relativity (GR) the singularity theorems of Hawking, Penrose and Geroch
tell us that, under reasonable assumptions, singularities are generic. A spacetime
is said to be singular if it is not geodesically complete, which may happen when
some geometrical curvature invariants diverge. The expectation is that, by quan-
tizing the gravitational degrees of freedom, namely, with a complete theory unify-
ing gravity and the quantum, the singularities shall be resolved. Loop quantization
(as in Loop Quantum Gravity) of the homogeneous, isotropic and flat Friedman-
Robertson-Walker (FRW) cosmology coupled to a massless scalar field ϕ , can be
exactly solved [1]. For that model it was shown that:

• The matter density operator ρ̂ has an absolute upper bound and the expansion θ
is also bounded. One can conclude that curvature scalars do not diverge. This is
a signal that a singularity is not present.
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• All states undergo a bounce and with this, the big bang is replaced by a big
bounce.

• The GR dynamics is recovered as we go away from the Planck scale, this means
that we are recovering the original theory that we want.

• Dynamics of semiclassical states are well captured by an effective theory that
retains information about the loop quantum geometry.

• With all these, one can conclude that the singularities are resolved: the geodesics
are inextendible, and are well defined on the other side of the would be big bang.

The fact that the effective theory provides an accurate description of the dynamics
at the Planck scale is strongly used to explore the anisotropic models. The effective
theory is obtained from the quantum Hamiltonian operator by taking expectation
values on appropriately defined states. The thus obtained effective Hamiltonian then
generates the dynamics on a classical phase space. The solutions to the effective the-
ory were shown in [2] to accurately describe the evolution of the expectation value
of the observables in the quantum theory when they are considered on semiclassi-
cal states. Those results were extended to open, closed and flat FRW models with
and without cosmological constant (see [3] for a review). Loop quantum cosmology
(LQC) has been extended to the simplest anisotropic cosmological models, namely
Bianchi I, II and IX [4, 5, 6]. But in none of these cases, the quantum theory has
been solved, even numerically. Then, in order to study these models at semiclassical
level, one generally assumes that the effective theory reproduces the solutions to
the quantum theory when semiclassical states are considered. This is our working
hypothesis, which is well justified by the results in the isotropic cases. It would be
interesting to know whether the evolution of the semiclassical states reproduces the
solutions which we get from the effective theory. From this point of view, the study
of the effective theory can be seen as the first step in this direction.

The new issues to consider in the anisotropic models are: is the bounce generic?
We now have anisotropy/Weyl curvature, how does it behave near the singular-
ity/bounce? Can we have different kind of bounce, say, dominated by shear σ? Are
the geometric scalars absolutely bounded? The goal of this contribution is to an-
swer these questions using the effective theory for Bianchi I which has anisotropies,
Bianchi II that has anisotropies and spatial curvature and Bianchi IX which has all
the features of Bianchi I, II and is furthermore, spatially compact. Even more, the
Bianchi IX model has a non trivial classical limit, in the sense that, Bianchi IX is
chaotic in the classical theory and behaves like Bianchi I with Bianchi II transitions
as one approaches the singularity.

2 Preliminaries

In this section we briefly review the quantization of some cosmological models
which include k=0 and k=1 FRW and Bianchi I, II and IX models by using loop
quantum gravity methods. Let us consider the spacetime as M = Σ ×R where Σ is
a spatial 3-manifold which can be identified by the symmetry group of the chosen
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model and is endowed with a fiducial metric oqab and associated fixed fiducial basis
of 1-forms oω i

a and vectors oea
i . If Σ is non-compact then we fix a fiducial cell, V ,

adapted to the fiducial triads with finite volume Vo. In GR, the gravitational phase
space consists of pairs (Ai

a,E
a
i ) on Σ where Ai

a is a SU(2) connection and Ea
i is a

densitized triad of weight 1. Since all of the models in which we are interested are
homogeneous and, if we restrict ourselves to diagonal metrics, one can fix the gauge
in such a way that Ai

a = ci

V 1/3
o

oω i
a and Ea

i = pi

V 2/3
o

√oq oea
i , where pi in terms of

the scale factors ai are |pi| = V 2/3
o a jak. Note that in isotropic cases, each of phase

space variables has only one independent component. The Poisson brackets can be
expressed as {ci, p j} = 8πGγδ i

j and for isotropic models, the Poisson bracket is
{c, p} = 8πGγ/3 where γ is Barbero-Immirzi parameter. With this choice of vari-
ables and gauge fixing, the Gauss and diffeomorphism constraints are satisfied and
the only constraint is the Hamiltonian constraint

CH =
∫

V
N

[
−

ε i j
kEa

i Eb
j

16πGγ2
√
|q|

(
Fk

ab − (1+ γ2)Ω k
ab

)
+Hmatter

]
d3x , (1)

where N is the lapse function, Hmatter = ρV and Ωab is the curvature of spin con-
nection Γ i

a compatible with the triads.
To construct the quantum kinematics, we have to select a set of elementary observ-
ables such that their associated operators are unambiguous. In loop quantum gravity
they are the holonomies he defined by the connection Ai

a along edges e and the
fluxes of the densitized triad Ea

i across surfaces. For our homogeneous models we
choose holonomies and pi. To have the corresponding constraint operator, one needs
to express it in terms of the chosen phase space functions he and pi. The first term,
ε i j

kEa
i Eb

j /
√
|q|, as in loop quantum gravity, can be treated by using Thiemann’s

strategy [7].

εi jk
EaiEb j√

|q|
= ∑

i

1
2πγGµ

εabcω i
cTr(h(µ)i {h(µ)−1,V}τk) , (2)

where h(µ)i is the holonomy along the edge parallel to ith vector basis with length µ
and V is the volume, which is equal to

√
|p1 p2 p3|. Note that µ is arbitrary. Now to

define an operator related to the first term, we can use the right hand side of Eq.(2)
and replace Poisson brackets with commutation relations. To find an operator related
to the curvature Fk

ab, for isotropic models and Bianchi I, one can consider a square
□i j in the i− j plane which is spanned by two of the fiducial triads (for closed
isotropic model since triads do not commute, to define this plane we use a triad and
a right invariant vector oξ a

i ), each of its sides has length µ̄i. Therefore, Fk
ab is given

by

Fk
ab = 2 lim

Ar□→0
ε k

i j Tr
(hµ̄

□i j
− I

µ̄iµ̄ j
τk
)

oω i
a

oω j
b . (3)
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Since in loop quantum gravity, the area operator does not have a zero eigenvalue,
one can take the limit of Eq.(3) when the area is equal to the smallest eigenvalue
of area operator, λ 2 = 4

√
3πγl2

p, instead of zero. Then, V 1/3
o µ̄iai = λ where ai is

the scale factor. For Bianchi II and IX, we cannot use this method because the re-
sulting operator is not almost periodic, therefore we express connection Ai

a in terms
of holonomies and then use the standard definition of curvature Fk

ab. The operators
corresponding to the connection are given by

ĉi =
ŝin µ̄ici

µ̄i
, where µ̄i = λ

√∣∣∣∣ pi

p j pk

∣∣∣∣ , i ̸= j ̸= k . (4)

Note that using this quantization method for flat FRW and Bianchi I models, one
has the same result as the direct quantization of curvature Fk

ab, but for closed FRW it
leads to a different quantum theory which is more compatible with the isotropic limit
of Bianchi IX. We call the first method of quantization curvature based quantization
and the second one connection based. In Bianchi II and Bianchi IX models the
terms related to the curvatures, Fk

ab and Ω k
ab, contain some negative powers of pi

which are not well defined operators. To solve this problem we use the same idea as
Thiemann’s strategy.

|pi|(ℓ−1)/2 =−
√
|pi|

4πGγ j( j+1)µ̃iℓ
τih

(µ̃i)
i {h(µ̃i)−1

i , |pi|ℓ/2} , (5)

where µ̃i is the length of a curve, ℓ ∈ (0,1) and j ∈ 1
2N is for the representation.

Therefore, for these three different operators we have three different curve lengths
(µ , µ̄ , µ̃) where µ and µ̃ can be some arbitrary functions of pi, so for simplicity we
can choose all of them to be equal to µ̄ . On the other hand we have another free
parameter in the definition of negative powers of pi, where for simplicity we take
j = 1/2, and since the largest negative power of pi which appears in the constraint
is −1/4 we will take ℓ = 1/2 to have them directly from Eq.(5) and after that to

express the other negative powers by them. The eigenvalues for the operator ̂|pi|−1/4

are given by

Ji =
h(V )

Vc
∏
j ̸=i

p1/4
j , where h(V ) =

√
V +Vc −

√
|V −Vc|,Vc = 2πγλℓ2

p.

By using these results and choosing some factor ordering, we can construct the
total constraint operator. Note that with a different choice of factor ordering we
will have different operators but the main results will remain almost the same. By
solving the constraint equation ĈH ·Ψ = 0, we have the physical states in physical
Hilbert space Hphys. Then we need to identify the physical observables. To test
singularity resolution we will study some geometric observables: expansion θ , shear
σ2, curvature scalars and also volume of the universe V and matter density ρ , as
relational observables in terms of ϕ , a massless scalar field.
Since working with full quantum theories of the models is difficult and, as shown in
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[2] for some models, the behavior of the effective or semiclassical equations, which
are classical equations with some quantum corrections, are good approximations to
the numerical quantum evolutions even near the Planck scale, we will work with the
effective equations.

3 Effective Theories

Isotropic flat and closed models

In the FRW model with k=0, the effective Hamiltonian is given by

Hk=0 =
3

8πGγ2λ 2 V 2 sin(λβ )2 −
p2

ϕ

2
≈ 0 , (6)

where pϕ is the momentum of the field, V is the volume and β its conjugate variable.
They are related to the c and p variables by the equations V = p3/2, β = c/

√
p and

satisfy the Poisson bracket {β ,V} = 4πGγ and {ϕ , pϕ} = 1. It was shown [2] that
the dynamics of semiclassical states are well captured by the effective Friedman
equation H2 = 8πG

3 ρ
(

1− ρ
ρcrit

)
, where H = V̇/3V is the Hubble parameter and

ρ = p2
ϕ/2V 2 is the matter density. The GR dynamics is recovered as we go away

from the Planck scale ρ < ρcrit/10, with ρcrit =
3

8πGγ2λ 2 .

Now, for the isotropic closed model, as we discussed in previous section, there are
two different quantum theories depending on the two different methods of quanti-
zation of the curvature Fk

ab. The Hamiltonians are,

H
(1)

k=1 =
3V 2

8πGγ2λ 2 [sin2(λβ −D)− sin2 D+(1+ γ2)D2]−
p2

ϕ

2
≈ 0 (7)

H
(2)

k=1 =
3V 2

8πGγ2λ 2 [sin2 λβ −2Dsinλβ +(1+ γ2)D2]−
p2

ϕ

2
≈ 0 , (8)

where D = λϑ/V−1/3 and ϑ = (2π2)1/3. Since for both effective theories there are
some geometric observables which are not absolutely bounded, we go further and
use more corrections which come from the inverse triad term in the full theory, to
see if the unboundedness of those observables is generic, or whether it improves by
adding more corrections. Therefore the Hamiltonian constraints change to

H
(1)

k=1 =
3A(V )V

8πGγ2λ 2 [sin2(λβ −D)− sin2 D+(1+ γ2)D2]−
p2

ϕ

2
≈ 0 (9)

H
(2)

k=1 =
3A(V )V

8πGγ2λ 2 [sin2 λβ −2Dsinλβ +(1+ γ2)D2]−
p2

ϕ

2
≈ 0 , (10)
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where A(V ) = 1
2Vc

(V +Vc − |V −Vc|) is a correction term which comes from the

operator ε i j
k Ea

i Eb
j /
√
|q|.

Bianchi I and II

The Hamiltonian for Bianchi I and II can be written in a single expression,

HBII =
p1 p2 p3

8πGγ2λ 2

[
sin µ̄1c1 sin µ̄2c2 + sin µ̄2c2 sin µ̄3c3 + sin µ̄3c3 sin µ̄1c1

]
+

1
8πGγ2

[
α(p2 p3)

3/2

λ√p1
sin µ̄1c1 − (1+ γ2)

(
α p2 p3

2p1

)2
]
−

p2
ϕ

2
≈ 0

where the parameter α allows us to distinguish between Bianchi I (α = 0) and
Bianchi II (α = 1). This Hamiltonian together with the Poisson Brackets {ci, p j}=
8πGγδ i

j and {ϕ , pϕ}= 1 gives the effective equations of motion.

Bianchi IX

In the previous Hamiltonians we choose the lapse N = V . But now in Bianchi IX,
we choose N = 1 to include more inverse triad corrections, then the effective Hamil-
tonian is given by

HBIX =− V 4A(V )h6(V )

8πGV 6
c γ2λ 2

(
sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3

+ sin µ̄2c2 sin µ̄3c3

)
+

ϑA(V )h4(V )

4πGV 4
c γ2λ

(
p2

1 p2
2 sin µ̄3c3 + p2

2 p2
3 sin µ̄1c1

+ p2
1 p2

3 sin µ̄2c2

)
− ϑ 2(1+ γ2)A(V )h4(V )

8πGV 4
c γ2

(
2V

[
p2

1 + p2
2 + p2

3

]
−
[
(p1 p2)

4 +(p1 p3)
4 +(p2 p3)

4
]

h6(V )

V 6
c

)
+

h6(V )V 2

2V 6
c

p2
ϕ ≈ 0.

4 Results

Now we will compare the results of the effective theories for the isotropic FRW k=0
and k=1, diagonal Bianchi I, II and IX. All of them with a matter content a massless
scalar field satisfying the Klein-Gordon equation. A good starting point to compare
the results is to answer the questions that we asked in the introduction, later we will
mention other important results:
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• Is the bounce generic? Yes. All solutions have a bounce. In other words, singular-
ities are resolved. In the closed FRW and the Bianchi IX model, there are infinite
number of bounces and recollapses due to the compactness of the spatial manifold.
• How does anisotropy/Weyl curvature behave near the bounce? These quantities
far from the bounce are monotonic and approach their classical values, but when
they reach the region near the bounce they behave differently. In Bianchi I, they
present one maximum which occurs at the bounce. In Bianchi II, they exhibit a
richer behavior because now they can be zero at the bounce or near to it, and have
more than one maximum (for the shear there are up to 4 maxima and for the scalar
curvature up to 2 maxima [8]). For Bianchi IX, if we restrict the analysis to one of
the infinite number of bounces, it can be shown that anisotropy and curvature behave
in the same way as Bianchi I or II. The subject of currect research is whether there
are new behaviors [9].
• Can we have different kind of bounce, say, dominated by shear σ? Yes, but only
in Bianchi II and IX. In Bianchi I the dynamical contribution from matter is always
bigger than the one from the shear, even in the solution which reaches the maximal
shear at the bounce [8].
• Are geometric scalars θ ,σ and ρ absolutely bounded? In the flat isotropic
model all the solutions to the effective equations have a maximal density equal to
the critical density, and a maximal expansion (θ 2

max = 6πGρcrit = 3/(2γλ )) when
ρ = ρcrit/2. For FRW k = 1 model, every solution has its maximum density but in
general the density is not absolutely bounded. In the effective theory which comes
from connection based quantization, expansion can tend to infinity. For the other
case, expansion has the same bound as the flat FRW model. However, by adding
some more corrections from inverse triad term, one can show that actually in both
effective theories the density and the expansion have finite values. For Bianchi I,
in all the solutions ρ and θ are upperly bounded by their values in the isotropic
case and σ is bounded by σ2

max = 10.125/(3γ2λ 2) [10]. For Bianchi II, θ ,σ and
ρ are also bounded, but for larger values than the ones in Bianchi I, i.e., there are
solutions where the matter density is larger than the critical density. With point-like
and cigar-like classical singularities [8], the density can achieve the maximal value
(ρ ≈ 0.54ρPl) as a consequence of the shear being zero at the bounce and curvature
different from zero. For Bianchi IX the behavior is the same as in closed FRW, if the
inverse triad corrections are not used, then the geometric scalars are not absolutely
bounded. But if the inverse triad corrections are used, then on each solution the ge-
ometric scalars are bounded but there is not an absolute bound for all the solutions
[9, 10].
• Bianchi I, II and therefore the isotropic case k=0 are limiting cases of Bianchi
IX, but they are not contained within Bianchi IX. While the isotropic FRW k=1 is
contained within Bianchi IX only if the inverse triad corrections are not included,
when they are included then the k=1 universe is a limiting case, like the k=0 universe.
• A set of quantities that are very useful are the Kasner exponents (in classical
Bianchi I, the scale factors are ai = tki , where ki are the Kasner exponents), because
they can be used to determine which kind of solution is obtained. The Kasner expo-
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nents tell us about the Bianchi I transitions (if they exist) and particularly in Bianchi
IX, they are used to study the BKL behavior in the vacuum case.

5 Conclusions

One of the main issues that a quantum theory of gravity is expected to address is
that of singularity resolution. Loop quantum cosmology has provided a complete
description in the case of isotropic cosmological models and singularity resolution
has been shown to be generic. A pressing question is whether these results can be
generalized to anisotropic models. In this case we lack a complete quantum theory,
but one can rely on the existence of an effective description, capturing the main
(loop) quantum geometric features. In this contribution we have described the main
features of such effective solutions. Singularities seem to be generically resolved as
the time evolution of geometrical scalars is well behaved past the would be classical
singularity. With the study of these anisotropic models, a question that still arises is
whether this behavior is generic for non-homogeneous configurations. That is, are
we a step forward toward generic quantum singularity resolution?
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