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Abstract Advancement in astronomical observations and technical instrumentation
implies taking into account the general relativistic effects due to the dynamical grav-
itational fields encountered by light while propagating from a star to the observer.
Therefore, data exploitation for Gaia-like space astrometric mission (ESA, launch
2013) requires a fully relativistic interpretation of the inverse ray-tracing problem,
namely the development of a highly accurate astrometric model, named RAMOD,
in accordance with the geometrical environment affecting light propagation itself
and the precepts of the theory of measurement. This could open a new rendition of
the stellar distances and proper motions, or even an alternative detection perspec-
tive of many subtle relativistic effects suffered by light while it is propagating and
subsequently recorded in the physical measurements.

1 Introduction

The role of astrometry has been revitalized thanks to the space mission Gaia [1]
which will be launched by ESA not earlier than September 2013. The expected end-
of-life astrometric performance, at the level of µas accuracy, requires to take into
account light deflections effects due to the Solar System bodies. This implies that
any astrometric measurement has to be modelled in a way that stellar light propa-
gation and detection should be both conceived in a general relativistic framework.
As matter of fact, the trajectory of a photon is traced by solving the null geodesic in
a curved space-time dictated by General Relativity (GR) and at the same time, the
detection process usually takes place in a geometrical environment generated by a
n-body distribution as it is that of our Solar System (SS).
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Nowadays, a few approaches exist that model light propagation in a relativistic
context. Among them, the post-Newtonian (pN) and the post-Minkowskian (pM)
approximations are those mainly used ([2, 3, 4] and references therein). Inside the
Consortium constitued for the Gaia data reduction (Gaia CU3, Core Processing,
DPAC) two different formulations of relativistic light propagation have been devel-
oped to model astrometric observations of distant sources by an SS observer: (i) the
GREM formulation [3], known as the Gaia baseline model IAU coordinate based
[5], and (ii) the RAMOD model ([6], 2006), an alternative approach fully compliant
with the precepts of local measurement in a relativistic setting. Actually RAMOD
is a family of astrometric models of increasing intrinsic accuracy conceived to solve
the inverse ray-tracing problem in a general relativistic framework. Their theoret-
ical equivalence to the 1-µas accuracy level has been recently demonstrated ([7]
and reference therein) and will be exploited, in a process, called in the Gaia jargon,
Astrometric Verification Unit (AVU) by comparing the results of two fully indepen-
dent astrometric reconstructions of the celestial sphere to assess all-sky scientific
reliability on position, including parallax, and proper motions. The link between the
models is crucial as far as the Gaia’s goal is concerned: the unbiased measurements,
i.e., independently from models, of the most fundamental astrophysical stellar pa-
rameters (absolute distance, angular position, velocity, and mass) for approximately
1 billion individual stars!

It can be inferred that the treatment of light propagation in time-dependent grav-
itational fields encompasses issues from fundamental astronomy to cosmology ([8],
[9], [10], [11], [12], [13] and references therein). The accurate measurement of the
motions of stars in our Galaxy can also provide access to the cosmological sig-
natures in the disk and halo, while astrometric experiments from within our Solar
System can probe possible deviations from GR in an unrivaled way just one cen-
tury after Einsteins’s great discoveries. With the Gaia mission approaching launch,
Relativistic Astrometry is about to trace the geometry of the visible Milky Way.

2 The astrometric problem

The astrometric problem consists, firstly, in solving the null geodesic for the single
stellar photon, in order to trace back the light trajectory to the initial position of the
emitting source and, then, determine its astrometric parameters through the astro-
metric observable, according to the chosen reference frames. Differently from the
other approaches, RAMOD’s full solution requires the integration of a set of cou-
pled non-linear differential equations, called “master equations”. The unknown of
these equations is the local line-of-sight ℓ̄ as measured by the fiducial observer u at
the point of observation in her/his rest-space. At the time of observation, ℓ̄ provides
the boundary condition for uniquely solving the light path by means of the rela-
tivistic definition of the observable [14] and the satellite-observer frames [15]. The
main purpose of the RAMOD approach is to express the null geodesic through all
the physical quantities entering the process of measurement without any approxima-
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tions, in order to entangle all the possible interactions of light with the background
geometry. RAMOD uses a 3+1 characterization of space-time in order to measure
physical phenomena along the proper time and on the rest-space of a set of fiducial
observers according to the following measurement protocol [16]: i) specify the phe-
nomenon under investigation; ii) identify the covariant equations which describe it;
iii) identify the observer who makes the measurements; iv) choose a frame adapted
to that observer allowing the space-time splitting into the observer’s space and time;
vi) understand the locality properties of the measurement under consideration (lo-
cal or non-local with respect to the background curvature); vii) identify the frame
components of those quantities which are the observational targets; viii) find a phys-
ical interpretation of the above components following a suitable criterion; ix) verify
the degree of the residual ambiguity in the interpretation of the measurements and
decide the strategy to evaluate it (i.e. comparing what is already known).

Solving the astrometric problem in practice means to compile an astrometric
catalog with the same order of accuracy as the measurements. To what extent, then,
is the process of star coordinate “reconstruction” consistent with General Relativity
&Theory of Measurements?

3 The geometry of the astrometric problem

Gaia-like measurement takes place inside the Solar System, i.e. a weakly relativistic
gravitationally bound system, described by the metric gαβ = ηαβ + hαβ +O(h2).
Now, in order to gauge how much curvature can be considered local or not with
respect to the measurement, let us resort to the virial theorem which requires an
energy balance of the order of |hαβ | ≤ U/c2 ∼ v2/c2, where v is the characteristic
relative velocity within the system 1. Therefore the level of accuracy is fixed by the
order of the small quantity ε ∼ (v/c). Since the system is weakly relativistic, the
perturbation tensor hαβ contributes with even terms in ε to g00 and gi j (lowest order
ε2) and with odd terms in ε to g0i (lowest order ε3, [17, 16]); its spatial variations
are of the order of |hαβ |, while its time variation is of the order of ε|hαβ |. This
means that at the order of ε3, not only the time dependence of the background metric
cannot be ignored any longer, but also the vorticity, which measures – in the process
of foliation – how a world-line of an observer rotates around a neighboring one,
can be neglected being proportional to the g0i term of the metric (see details in [7]).
Consequently, it is not possible to define a rest-space of a fiducial observer that
covers the entire space-time. Any observer u can be considered at rest with respect
to the coordinates xi only locally, and for this reason u is called the local barycentric
observer, as identified in [18]. The master equations satisfied by the vector field ℓ̄
up to the ε3 order of accuracy are

1 For a typical velocity ∼ 30 km/s, (v/c)2 ∼ 1 milli-arcsec
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named “RAMOD4 master equations” in the dynamical case [18, 7], σ being the
parameter of the null geodesic. Note that there is a differential equation also for the
ℓ̄0 component, which represents an opportunity to better decipher light propagation
in future developments.

The ε2 regime, instead, is referred to as the “static case”, or “static space-time”,
i.e. a stationary space-time in which a time-like Killing vector field u has vanishing
vorticity [6]. In this case the parameter σ on u is the proper time of the physi-
cal observers who transport the spatial coordinates without shift. Any hypersurface
t(x,y,z) = constant, at each different coordinate time t, can be considered the rest
space everywhere of the observer u and the geometry that each photon feels is, then,
identified with the weak relativistic metric where g0i = 0. In these circumstances we
can define a one-parameter local diffeomorphism which maps each point of the null
geodesic to the point on the slice at the time of observation, say S(to) [6]:
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Equations (3) determine light propagation in the static case, and are called “RAMOD3
master equations” [6]. Nevertheless, equation (2) can be integrated taking into ac-
count also the expansion of the congruence u [7] and, then, velocity of a uni-
form source can be included from ∂0h00. Only a vorticity-free space-time allows
to parametrize simultaneously the mapped trajectory with respect to the Center of
Mass on S(to); if the Euclidean scalar product is applied, the RAMOD procedure
for the parametrization generalizes the one used in [2] or [3] [7].

The fact that light tracing is different with or without the vorticity term makes
evident how the RAMOD recipe, based on a measurement protocol, differs from
a direct “coordinate” approach which, instead, does not need to discriminate the
accuracy of the geometry to be involved.

4 Matching physics and coordinates at high accuracy

The quantity ℓ̄ is the unitary four-vector representing the local line-of-sight of the
incoming photon as measured by the local observer u in his/her gravitational en-
vironment; it represents a physical quantity in any case, with or without vorticity.
By implementing its coordinate expressions straightaway, equations (2), i.e. those
for the spatial components, are converted into the coordinate ones derived in [2] at
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the first pM approximation of the null geodesic [7]. This result was expected, since
both models are deduced from the null geodesic in a weak field regime. Then, once
such an equivalence is obtained, one could solve the master equation in the RAMOD
framework by applying the same procedure as adopted in [2]. However, consistently
with the reasoning of the previous section, only RAMOD3 master equation can be
transformed into the solution given by [2], since the parametrization in RAMOD
is possible only in a vorticity-free space-time. In fact, if one assumes a constant
light direction and a perturbed straight line trajectory, the equivalence of the two
parametrizations implies a change of coordinates which transforms equation (2) into
the same parametrized equation (36) used in [2]. Nevertherless, the integration of
the null geodesic in [2] intends to consider the gravitomagnetic effects. In addition,
the metric coefficients hαβ depend on the retarded distance r(a) as discussed in [18].
This means that one has to compute the spatial coordinate distance r(a) from the
points on the photon trajectory to the a-th gravity source at the appropriate retarded
time and up to the required accuracy. Hence, if we wish our model to be accurate to
ε3, it suffices that the retarded distance r contributes to the gravitational potentials
– which we recall are at least of order ε2 – with terms of the order of ε . Instead,
to the order of ε2 (static geometry), the contribution of the relative velocities of the
gravitating sources can be neglected. Indeed, in the stationary case, with expansion,
one can choose to further expand the retarded distance in order to keep the terms
depending on the source’s velocity up to the desired accuracy. Obviously the effects
due to the bodies’ velocity cannot be related to a gravity-magnetic effect, at least
up to the scale where the vorticity can be neglected. Actually, the positions of the
bodies can be recorded as subsequent snapshots onto the mapped trajectories and
deduced as “postponed” corrections in the reconstruction of the photon’s path.

The importance of the measurement protocol in setting the correct role of the
coordinates, and thus avoiding misinterpretations of parallel but different quantities,
is also discussed in [14], where, within the context of the Gaia mission (ESA, [1]), a
first comparison between RAMOD and GREM (Gaia RElativistic Model, [3]) was
carried out via the extrapolation of the aberrational term in the local light direction.
Differences, that already exist at the level of the aberration effect, suggest particular
care in the interpretation of the final catalog. Another example which shows how
the accurate inclusion of the geometry redraws a standard measurement, is given
by the formula for the Doppler shift in [13]. The spectroscopic and astrometric data
that will be provided by the new generation of satellites can be complemented with
one another, thus leading to a general-relativistic Doppler which is exact up to and
including the ε3 terms. It is also showed that a previously proposed Doppler-shift
formula is definitely not adequate to this task, since it misses relevant relativistic
corrections already at ε2.
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5 Conclusions

Modeling light propagation is intrinsically connected to the identification of the
geometry where photons move. The different conception of RAMOD provides a
method to exploit highly accurate observations to their full extent, as could be the
case for the astrometric data coming from the ESA mission Gaia, possibly a new
beginning in the field of Relativistic Astrometry. The comparison between differ-
ent light modeling approaches is extremely important since Gaia will “change” our
scientific vision and we are implementing new methods using real data. By com-
paring different formulations of a null geodesic we have the opportunity to exploit
the advantages of the different methods and improve on our understanding of light
propagation. As far as RAMOD method is concerned, the geometrical distinction
between the master equations introduces a criterion to disentangle coordinate and
physical effects.

In RAMOD the vorticity term cannot be neglected at the order of ε3: ignoring
it locally is valid only in a small neighborhood compared to the scale of vorticity
itself. When the vorticity term is needed the light trajectory cannot be laid out on a
unique rest-space of simultaneity from the observer to the star, wherever the latter
could be located. Without vorticity RAMOD allows a parametrization of the light
trajectory and sets the level of reciprocal consistency with the existing approaches.
Only master equations of RAMOD4, i.e. the case of a dynamical space-time, fully
preserve the active content of gravity. This solution is accurate enough to implement
Relativistic Astrometry beyond Gaia. Considering the number of objects that can be
observed in high accuracy regime, the local line-of-sight, as a physical entity, can
be also used in the future for an “inverse parameter problem” approach, able to
statistically determine the metric also outside the Solar System [19].
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