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Abstract Like the Lovelock Lagrangian which is a specific homogeneous polyno-
mial in Riemann curvature, for an alternative derivation of the gravitational equation
of motion, it is possible to define a specific homogeneous polynomial analogue of
the Riemann curvature, and then the trace of its Bianchi derivative yields the cor-
responding polynomial analogue of the divergence free Einstein tensor defining the
differential operator for the equation of motion. We propose that the general equa-
tion of motion is G(n)

ab =−Λgab +κnTab for d = 2n+1, 2n+2 dimensions with the
single coupling constant κn, and n= 1 is the usual Einstein equation. It turns out that
gravitational behavior is essentially similar in the critical dimensions for all n. All
static vacuum solutions asymptotically go over to the Einstein limit, Schwarzschild-
dS/AdS. The thermodynamical parameters bear the same relation to horizon radius,
for example entropy always goes as rd−2n

h and so for the critical dimensions it always
goes as rh, r2

h. In terms of the area, it would go as A1/n. The generalized analogues of
the Nariai and Bertotti-Robinson solutions arising from the product of two constant
curvature spaces, also bear the same relations between the curvatures k1 = k2 and
k1 =−k2 respectively.

1 Introduction

What stands gravity apart from rest of the physics is its universal character that it
links to everything including massless particles and hence it can only be described
by the spacetime curvature, and its dynamics has therefore to follow from the geo-
metric properties of the Riemann curvature tensor [1]. The Einstein gravitational
equation could be deduced from the geometric property of Riemann curvature,
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known as the Bianchi identity, implying vanishing of its Bianchi derivative iden-
tically. Its trace yields the divergence-free second rank symmetric Einstein tensor.
It defines the differential operator on the left hand side of the equation while the
gravitational source – energy momentum distribution described by a second rank
symmetric tensor with the condition of vanishing divergence – appears on the right
hand side. This is the case for Einstein gravity which is linear in Riemann curva-
ture, and its vacuum is trivially flat in 3 dimensions and it becomes dynamically
non-trivial in 4 dimensions.

The question is, could this be generalized to a polynomial analogue of the Rie-
mann tensor? Consider a tensor with the same symmetry properties as the Riemann
which is a homogeneous polynomial of degree n in Riemann, and then demand that
the trace of its Bianchi derivative vanishes. This will fix the coefficients in the poly-
nomial and will give the divergence free second rank symmetric tensor G(n)

ab , the
nth order analogue of the Einstein tensor, which is the same as what one would get
from the variation of the nth order Lovelock Lagrangian [2]. Thus we have the gen-
eralized polynomial Riemann curvature, R(n)

abcd , which would describe gravitational
dynamics in d = 2n+1,2n+2 in the same manner as Riemann does for d = 3,4. We
can define corresponding vacuum as R(n)

ab = 0, would it also be trivial in d = 2n+1

dimension? The answer is indeed, yes [3]. It would be R(n)
abcd flat but not Riemann

flat, and for that it would describe a global monopole [4].
What should be the gravitational equation in dimension > 4? Should it continue

to be the Einstein equation which is linear in Riemann or should it include the one
following from the higher order Riemann, R(n)

abcd yet giving the second order quasi-
linear equation? A general abiding principle is that the equation be second order
quasi-linear so that the initial value problem is well formulated giving unique evo-
lution. This uniquely identifies the Lovelock polynomial Lagrangian or equivalently
the above discussed polynomial Riemann curvature [2]. Should all orders that are
non-trivial in the equation be included like the linear Einstein, quadratic Gauss-
Bonnet, and so on, or the only highest one? Should it be ∑G(n)

ab or G(n)
ab ? In the

former, each order will have its own coupling and so there would be n of them,
and there is no obvious way to fix them. Since there is only one force which al-
lows determination of only one coupling parameter by experimentally measuring
its strength, gravity should therefore have only one dimensional coupling parameter
and its dimension would however depend upon the spacetime dimension. Thus we
propose the gravitational equation should in general be written as

G(n)
ab =−Λgab +κnTab (1)

for d = 2n+1,2n+2 dimensions. Note that Λ , which characterizes dynamics free
spacetime, is part of the structure of spacetime on the same footing as the velocity of
light [5]. In what follows we wish to demonstrate that this equation imbibes beau-
tifully the general vacuum character [3] while the static vacuum solutions asymp-
totically go over to the right Einstein limit, even though the linear Einstein term is
not included. This means higher order terms in curvature are only pertinent to the
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high energy end near the black hole horizon while their effect weans out asymp-
totically at the low energy end approximating to the linear order Einstein solution,
Schwarzschild-dS/AdS in d dimension [6, 7]. It is remarkable that the thermody-
namical parameters, temperature and entropy bear universal relation to the horizon
radius for static black holes in d = 2n+1,2n+2, and interestingly this property also
marks the characterization of this class of black holes [8, 7].

2 The Lovelock curvature polynomial and the equation of
motion

Following Ref. [2], we define the Lovelock curvature polynomial

R(n)
abcd = F(n)

abcd −
n−1

n(d −1)(d −2)
F(n)(gacgbd −gadgbc),

F(n)
abcd = Qab

mnRcdmn (2)

where

Qab
cd = δ aba1b1...anbn

cdc1d1...cndn
Ra1b1

c1d1 , . . . ,Ran−1bn−1
cn−1dn−1 ,

Qabcd
;d = 0. (3)

It follows that the trace of the Bianchi derivative yields the divergence free G(n)
ab ; i.e.

gacgbdR(n)
abcd;e = G(n)b

e;b = 0 (4)

where the analogue of nth order Einstein tensor is given by

G(n)
ab = n(R(n)

ab − 1
2

R(n)gab). (5)

Note that
R(n) =

d −2n
n(d −2)

F(n) (6)

which vanishes for D = 2n while F(n), the Lovelock action polynomial, is non-zero
but its variation, G(n)

ab vanishes identically. Since R(n) = gabR(n)
ab = 0 for d = 2n for

arbitrary gab, it implies R(n)
ab = 0 identically as it involves apart from the metric its

first and second derivatives which are arbitrary.
Since G(n)

ab is divergence free, we could write

G(n)
ab = κnTab −Λgab, T ab

;b = 0. (7)

This is the gravitational equation for d = 2n+ 1,2n+ 2 dimensions with κn as the
gravitational constant, and n = 1 is the Einstein equation for 3 and 4 dimensions.
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What degree of polynomial in Riemann should the equation have is thus determined
by the spacetime dimension. It is linear for 3,4, quadratic for 5,6, and so on.

3 Universal features

The first universal feature studied was that of gravitational field inside a uniform
density sphere and it was shown that it was always given by the Schwarzschild inte-
rior solution in Einstein as well as in Einstein-Gauss-Bonnet/Lovelock theories [9].
Here we shall consider the cases of static black holes, and product spaces describing
the Nariai and Bertotti-Robinson spacetimes.

3.1 Static black holes

The static spherically symmetric solution of the vacuum equation (1) is given by

gtt =−1/grr =V = 1− r2(Λ +M/rd−1)1/n (8)

which asymptotically takes the form of the Schwarzschild-dS/AdS solution in d di-
mensions showing the correct Einstein limit. The solution for the general case of the
Einstein-Lovelock equation can also be written in terms of the nth order algebraic
polynomial equation which cannot be solved in general for n > 4. It is therefore
clear that we cannot carry on with arbitrarily large number of coupling parameters.
For the case of dimensionally continued black holes [10], it was proposed that all
the couplings are determined in terms of the unique ground state Λ , and the solu-
tion is then given by V = 1− r2Λ −M/rd−1/2 which clearly does not go over to the
Einstein solution for large r. This corresponded to the algebraic polynomial being
degenerate. It turns out that the proper Einstein limit could be brought in simply by
considering the polynomial to be derivative degenerate [7]. Then the solution agrees
near the horizon with the dimensionally continued black hole and asymptotically
with the proper Einstein limit, and it is the solution of the equation (1).

Further the thermodynamical parameters, temperature and entropy bear the uni-
versal relation to the horizon radius for the critical d = 2n+ 1, 2n+ 2 dimensions
[8]. For instance, the entropy always goes as rd−2n

h which for the critical dimen-
sions would always go as rh, r2

h. In terms of the area, it would however go as A1/n,
and hence the entropy is proportional to area only for the n = 1 Einstein theory.
Interestingly this universality is also the characterizing property of this class of pure
Lovelock black holes [7, 8].

We would like to conjecture that the above universality property would also be
true for the rotating black hole solution as and when it is found.
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3.2 Product spaces: Nariai and Bertotti-Robinson solutions

The Nariai and Bertotti-Robinson solutions arise as product of two constant curva-
ture spaces. When the two curvatures are equal, k1 = k2, it is the Nariai solution of
the equation (1) with Tab = 0 for n = 1, and when the curvatures are equal and op-
posite, k1 =−k2, it is the Bertotti-Robinson solution describing the uniform electric
field. The former is the Λ vacuum spacetime but is not conformally flat while the
latter is the Einstein-Maxwell solution for uniform electric field which is confor-
mally flat. It turns out the generalized pure Lovelock solutions of the equation (1)
for any n bear out the same curvature relations for the Nariai vacuum (k1 = k2) and
Bertotti-Robinson uniform electric field (k1 =−k2), and the condition for conformal
flatness is also k1k2 = 0 [11].

In d = 2n+2 dimensions, we have the following general relation connecting the
two curvatures, Λ and the electric field E,

(k1 + k2)E2 =−4(k1 − k2)Λ . (9)

This clearly indicates k1 = k2 for E = 0, the Nariai vacuum spacetime and k1 =−k2
for Λ = 0, the Bertotti-Robinson uniform electric field spacetime. The metric is
given by

ds2 = (1− k1r2)dt2 − dr2

1− k1r2 − 1
k2

dΣ 2
(d−2). (10)

4 Discussion

We have proposed that the equation (1) is the proper equation for gravity in higher
dimensions. The correct equation should have the following properties: (a) it should
be second order quasi-linear, (b) for a given dimension, it should be of degree
n = [(d − 1)/2] in the Riemann curvature, (c) it should have only one coupling
constant which could be determined by experimentally measuring the strength of
the force and (d) since higher order curvature contributions are the high energy
corrections to the linear order in Riemann Einstein gravity which should wean out
asymptotically, hence solutions should tend to the corresponding Einstein solution
for large r. The proposed equation satisfies all these properties. The latter feature
of the asymptotic Einstein limit is verified for the static black hole solutions which
is however also true for the Einstein-Gauss-Bonnet black hole. What is remarkable
here is that the equation is free of the Einstein term, yet asymptotically solutions
go over to the proper Einstein limit. This means high energy effects which come
through the higher order curvature terms are fully and properly taken care by the
highest order n = [(d−1)/2] term, and they could be realized only in higher dimen-
sions [12]. It is interesting that gravity asks for higher dimensions for realization of
its high energy effects. This is because inclusion of higher orders in Riemann cur-
vature and the demand that the equation continues to be second order quasi-linear
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naturally lead to higher dimensions. This does not happen for any other force that
one has to consider higher dimension for realization of its high energy corrections.
It happens for gravity because the spacetime curvature is the basic field variable,
and hence high energy effects involve higher orders in it and their contribution in
the equation, if it continues to retain its second order quasi-linear character, can be
realized only in higher dimensions [12]. We would like to emphasize that higher
dimensions and high energy effects seem to be intimately connected. Since high en-
ergy effects ask for higher dimensions, quantum gravity should also involve higher
dimensions. This is because quantum gravity should approach the classical limit via
the high energy intermediate limit.

One of the problems with the Einstein-Lovelock solutions is the number of cou-
pling constants and there is no way to fix them. For the dimensionally contin-
ued static black holes, all the couplings were prescribed in terms of the unique
ground state Λ [10]. These solutions were however not asymptotically Einstein,
Schwarzschild-dS/AdS. Instead the corresponding solutions of the equation (1) have
the right limits at both ends, nearer to horizon agreeing with the dimensionally
continued and asymptotically to Schwarzschild-dS/AdS. This is indicative of the
inherent correctness of the equation. The universal character of gravity in the criti-
cal dimensions is another very attractive feature of the equation. That the vacuum,
G(n)

ab = 0, in the odd critical dimension is always trivial, R(n)
abcd = 0 [3]. All this taken

together points to the fact that the equation (1) is the right equation for gravitation
in higher dimensions.

For a given order n in the Riemann curvature, the critical dimensions are d =
2n+ 1, 2n+ 2 and it is trivial/kinematic in the former and it becomes dynamic in
the latter. This is a universal general feature. In the critical dimensions, gravity has
the similar behavior as indicated by universality of the thermodynamic parameters
in terms of the horizon radius and of the Nariai and Bertotti-Robinson solutions. It
is interesting to note that in terms of black hole area, entropy is always proportional
to A1/n and so it is proportional to area only for the n = 1 Einstein gravity. This is
an interesting general result that entropy always goes as the nth root of area of the
black hole. In an intuitive sense we can say that it is nth root of the Einstein gravity
for the critical d = 2n+1, 2n+2 dimensions.

All this we have established for the simple case of static black hole but we believe
that it is indeed a general feature and hence should be true for the stationary rotating
black hole as well. So far there exists no rotating pure Lovelock black hole solution,
and this conjecture would be verified as and when a solution is found.
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