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Abstract A new analytical approach to the motion and radiation of (comparable
mass) binary systems has been introduced in 1999 under the name of Effective One
Body (EOB) formalism. We review the basic elements of this formalism, and dis-
cuss some of its recent developments. Several recent comparisons between EOB
predictions and Numerical Relativity (NR) simulations have shown the aptitude of
the EOB formalism to provide accurate descriptions of the dynamics and radiation
of various binary systems (comprising black holes or neutron stars) in regimes that
are inaccessible to other analytical approaches (such as the last orbits and the merger
of comparable mass black holes). In synergy with NR simulations, post-Newtonian
(PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism
is likely to provide an efficient way of computing the very many accurate template
waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

1 Introduction

The general relativistic N-body problem has been investigated from the early days
of Einstein’s gravitation theory (and even earlier, because it was already tackled
by Johannes Droste within the framework of the 1913 Einstein-Grossmann “En-
twurf” theory). Here, we shall focus on the general relativistic two-body prob-
lem. This problem has been the subject of many investigations within the post-
Newtonian (PN) formalism, since the pioneering works of Einstein (1915; when
m1 ≪ m2), Lorentz and Droste (1917), Levi-Civita (1937) and Einstein, Infeld and
Hoffmann (1938). [see, e.g., [1] for a review and references to the early literature.]
For many years, the first post-Newtonian (1PN) approximation (i.e. the inclusion
of the leading-order relativistic corrections, proportional to (v/c)2 or GM/c2r, to
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the Newtonian equations of motion) appeared as being accurate enough for apply-
ing Einstein’s theory to known binary systems. The situation changed in the mid
1970’s with the discovery of the Hulse-Taylor binary pulsar PSR 1913+ 16. The
need to compare the accurate observations of this system (by Taylor and collabora-
tors) to the predictions of Einstein’s theory motivated the development of improved
relativistic theories of binary systems, applicable to strongly self-gravitating bodies,
and including terms up to the 2.5PN approximation (i.e. O[(v/c)5] beyond Newton).
[See [2] and references therein.] The situation has again changed recently with the
development of interferometric gravitational wave (GW) detectors, and the prospect
of detecting the GW’s emitted during the last orbits and the coalescence of binary
systems made of black holes or neutron stars. The latter prospect motivated the de-
velopment (or improvement) of several different methods of computing the motion
and radiation of binary systems.

First, this motivated pushing PN calculations of the dynamics of binary systems
to the 3PN level [3, 4, 5, 6, 7], with inclusion of 3.5PN radiation-reaction terms
[8, 9, 10]. Second, this motivated the development of new, accurate GW gener-
ation formalisms, notably the Blanchet-Damour-Iyer (matched) “multipolar post-
Minkowskian” formalism [11, 12, 13, 14, 15, 16] and the “direct integration of
the relaxed Einstein’s equations” formalism of Will and collaborators [17, 18, 19],
which extended previous work by Epstein and Wagoner [20] and Thorne [21].
These GW generation formalisms allowed one to compute emitted gravitational
waveforms with an unprecedented PN accuracy1. After the 1PN correction to
the waveform [20, 22, 12], there is a 1.5PN “tail” (i.e. hereditary) correction
[15, 23, 24], then a “direct” 2PN term [25, 26, 17], followed by higher-order cor-
rections [27, 28, 29, 30, 31, 32, 33, 34, 35]. [See [36] for a detailed account and
more references.] Parallely to these improved PN computations of the GW emission
of comparable-mass systems (with m1 ∼ m2), other authors developed the analyti-
cal theory of the GW emission of extreme mass-ratio systems (with m1 ≪ m2): see
Refs. [37, 38, 39, 40] and the review of Sasaki and Tagoshi [41].

Some of the PN calculations of the dynamics, and/or GW emission, of comparable-
mass systems have been recently (re)done (e.g. the 3PN dynamics [42]) by using a
somewhat different formalism, dubbed “effective field theory” [43]. Let us, how-
ever, note that most of the technical aspects of the effective-field-theory approach
had already been introduced and used before. For instance: (i) Ref. [44] discussed
the (Fokker) two-body effective action due to the exchange of a linear field (of spin
s = 0,1 and 2) ; (ii) Ref. [45] explicitly discussed the representation (and computa-
tion) of the (nonlinear) effective two-body action in terms of Feynman-like diagrams
(made of concatenated propagators and vertices); (iii) The appendix A of Ref. [46]
discussed finite-size effects in terms of nonminimal worldline couplings in the ef-
fective action; (iv) The (quantum field theory) technique of dimensional regulariza-
tion (together with a diagrammatic analysis of ultraviolet divergences) was crucially

1 For gravitational waveforms, one conventionally defines the PN accuracy as the fractional PN
accuracy with respect to the leading-order, O(c−5), quadrupolar emission. E.g., a 1PN-accurate
waveform retains next-to-leading order terms, i.e. terms smaller than the quadrupolar waveform by
a factor O(c−2).
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used to derive the 3PN dynamics in Refs. [5, 6], and 3PN radiation in Ref. [31]; and
(v) The exponential parametrization of the metric (which suppresses the leading-
order gravitational cubic vertex) had been introduced in Ref. [12] and then stan-
dardly used in many PN works. It is, however, possible that the more systematic
(and automatized) implementation of such diagrammatic methods, together with
the tapping of standard techniques for computing Feynman graphs (as exemplified
in [42]) may allow one to be more efficient in computing higher-order processes,
or, at least, to open new ways of understanding them (see, in this respect, Ref. [47]).

Separately from these purely analytical approaches to the motion and radiation of
binary systems, which have been developed since the early days of Einstein’s theory,
Numerical Relativity (NR) simulations of Einstein’s equations have relatively re-
cently (2005) succeeded (after more than thirty years of developmental progress) to
stably evolve binary systems made of comparable mass black holes [48, 49, 50, 51].
This has led to an explosion of works exploring many different aspects of strong-
field dynamics in General Relativity, such as spin effects, recoil, relaxation of the
deformed horizon formed during the coalescence of two black holes to a stationary
Kerr black hole, high-velocity encounters, etc.; see [52] for a review. In addition,
recently developed codes now allow one to accurately study the orbital dynamics,
and the coalescence of binary neutron stars. Much physics remains to be explored
in these systems, especially during and after the merger of the neutron stars (which
involves a much more complex physics than the pure-gravity merger of two black
holes).

Recently, a new source of information on the general relativistic two-body prob-
lem has opened: gravitational self-force (GSF) theory. This approach goes one step
beyond the test-particle approximation (already used by Einstein in 1915) by taking
into account self-field effects that modify the leading-order geodetic motion of a
small mass m1 moving in the background geometry generated by a large mass m2.
After some ground work (notably by DeWitt and Brehme) in the 1960’s, GSF the-
ory has recently undergone rapid developments (mixing theoretical and numerical
methods) and can now yield numerical results that yield access to new information
on strong-field dynamics in the extreme mass-ratio limit m1 ≪ m2. See Ref. [53] for
a review.

Each of the approaches to the two-body problem mentioned so far, PN theory,
NR simulations and GSF theory, have their advantages and their drawbacks. It has
become recently clear that the best way to meet the challenge of accurately com-
puting the gravitational waveforms (depending on several continuous parameters)
that are needed for a successful detection and data analysis of GW signals in the
upcoming LIGO/Virgo/GEO/. . . network of GW detectors is to combine knowl-
edge from all the available approximation methods: PN, NR and GSF. Several
ways of doing so are a priori possible. For instance, one could try to directly com-
bine PN-computed waveforms (approximately valid for large enough separations,
say r ≳ 10G(m1 +m2)/c2) with NR waveforms (computed with initial separations
r0 > 10G(m1 + m2)/c2 and evolved up to merger and ringdown). However, this
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method still requires too much computational time, and is likely to lead to wave-
forms of rather poor accuracy, see, e.g., [54, 55, 56].

On the other hand, five years before NR succeeded in simulating the late inspiral
and the coalescence of binary black holes, a new approach to the two-body prob-
lem was proposed: the Effective One Body (EOB) formalism [57, 58, 59, 60]. The
basic aim of the EOB formalism is to provide an analytical description of both the
motion and the radiation of coalescing binary systems over the entire merger pro-
cess, from the early inspiral, right through the plunge, merger and final ringdown.
As early as 2000 [58] this method made several quantitative and qualitative pre-
dictions concerning the dynamics of the coalescence, and the corresponding GW
radiation, notably: (i) a blurred transition from inspiral to a ‘plunge’ that is just a
smooth continuation of the inspiral, (ii) a sharp transition, around the merger of the
black holes, between a continued inspiral and a ring-down signal, and (iii) estimates
of the radiated energy and of the spin of the final black hole. In addition, the effects
of the individual spins of the black holes were investigated within the EOB [60, 61]
and were shown to lead to a larger energy release for spins parallel to the orbital
angular momentum, and to a dimensionless rotation parameter J/E2 always smaller
than unity at the end of the inspiral (so that a Kerr black hole can form right after
the inspiral phase). All those predictions have been broadly confirmed by the results
of the recent numerical simulations performed by several independent groups (for
a review of numerical relativity results and references see [52]). Note that, in spite
of the high computer power used in NR simulations, the calculation, checking and
processing of one sufficiently long waveform (corresponding to specific values of
the many continuous parameters describing the two arbitrary masses, the initial spin
vectors, and other initial data) takes on the order of one month. This is a very strong
argument for developing analytical models of waveforms.

2 EOB description of the conservative dynamics of two body
systems

Before reviewing some of the technical aspects of the EOB method, let us indicate
the historical roots of this method. First, we note that the EOB approach comprises
three, rather separate, ingredients:

1. a description of the conservative (Hamiltonian) part of the dynamics of two
bodies;

2. an expression for the radiation-reaction part of the dynamics;
3. a description of the GW waveform emitted by a coalescing binary system.

For each one of these ingredients, the essential inputs that are used in EOB works
are high-order post-Newtonian (PN) expanded results which have been obtained by
many years of work, by many researchers (see references above). However, one of
the key ideas in the EOB philosophy is to avoid using PN results in their original
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“Taylor-expanded” form (i.e. c0 + c1 v/c+ c2 v2/c2 + c3 v3/c3 + · · ·+ cn vn/cn), but
to use them instead in some resummed form (i.e. some non-polynomial function of
v/c, defined so as to incorporate some of the expected non-perturbative features of
the exact result). The basic ideas and techniques for resumming each ingredient of
the EOB are different and have different historical roots.

Concerning the first ingredient, i.e. the EOB Hamiltonian, it was inspired by an
approach to electromagnetically interacting quantum two-body systems introduced
by Brézin, Itzykson and Zinn-Justin [62].

The resummation of the second ingredient, i.e. the EOB radiation-reaction force
F , was initially inspired by the Padé resummation of the flux function introduced by
Damour, Iyer and Sathyaprakash [63]. More recently, a new and more sophisticated
resummation technique for the radiation reaction force F has been introduced by
Damour and Nagar [64, 65].

As for the third ingredient, i.e. the EOB description of the waveform emitted
by a coalescing black hole binary, it was mainly inspired by the work of Davis,
Ruffini and Tiomno [66] which discovered the transition between the plunge signal
and a ringing tail when a particle falls into a black hole. [Additional motivation
for the EOB treatment of the transition from plunge to ring-down came from work
on the, so-called, “close limit approximation” [67].] In addition, a very efficient
resummation of the waveform has been introduced by Damour, Iyer and Nagar [68,
69, 64]. It will be discussed in detail below.

Within the usual PN formalism, the conservative dynamics of a two-body system
is currently fully known up to the 3PN level [3, 4, 5, 6, 7, 42] (see below for the
partial knowledge beyond the 3PN level). Going to the center of mass of the sys-
tem (ppp1 + ppp2 = 0), the 3PN-accurate Hamiltonian (in Arnowitt-Deser-Misner-type
coordinates) describing the relative motion, qqq = qqq1 − qqq2, ppp = ppp1 = −ppp2, has the
structure

Hrelative
3PN (qqq, ppp) = H0(qqq, ppp)+

1
c2 H2(qqq, ppp)+

1
c4 H4(qqq, ppp)+

1
c6 H6(qqq, ppp) , (1)

where
H0(qqq, ppp) =

1
2µ

ppp2 − GMµ
|qqq|

, (2)

with
M ≡ m1 +m2 and µ ≡ m1 m2/M , (3)

corresponds to the Newtonian approximation to the relative motion, while H2 de-
scribes 1PN corrections, H4 2PN ones and H6 3PN ones. In terms of the rescaled
variables qqq′ ≡ qqq/GM, ppp′ ≡ ppp/µ , the explicit form (after dropping the primes for
readability) of the 3PN-accurate rescaled Hamiltonian Ĥ ≡ H/µ reads [70, 71, 5]
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ĤN(qqq, ppp) =
ppp2

2
− 1

q
, (4)

Ĥ1PN(qqq, ppp) =
1
8
(3ν −1)(ppp2)2 − 1

2
[(3+ν)ppp2 +ν(nnn · ppp)2]

1
q
+

1
2q2 , (5)

Ĥ2PN(qqq, ppp) =
1
16

(1−5ν +5ν2)(ppp2)3

+
1
8
[
(5−20ν −3ν2)(ppp2)2 −2ν2(nnn · ppp)2 ppp2 −3ν2(nnn · ppp)4] 1

q

+
1
2
[
(5+8ν)ppp2 +3ν(nnn · ppp)2] 1

q2 − 1
4
(1+3ν)

1
q3 , (6)

Ĥ3PN(qqq, ppp) =
1

128
(−5+35ν −70ν2 +35ν3)(ppp2)4

+
1
16

[
(−7+42ν −53ν2 −5ν3)(ppp2)3 +(2−3ν)ν2(nnn · ppp)2(ppp2)2

+ 3(1−ν)ν2(nnn · ppp)4 ppp2 −5ν3(nnn · ppp)6
]1

q

+

[
1
16

(−27+136ν +109ν2)(ppp2)2 +
1
16

(17+30ν)ν(nnn · ppp)2 ppp2

+
1
12

(5+43ν)ν(nnn · ppp)4
]

1
q2

+

{[
−25

8
+

(
1
64

π2 − 335
48

)
ν − 23

8
ν2
]

ppp2

+

(
−85

16
− 3

64
π2 − 7

4
ν
)

ν(nnn · ppp)2
}

1
q3

+

[
1
8
+

(
109
12

− 21
32

π2
)

ν
]

1
q4 . (7)

In these formulas ν denotes the symmetric mass ratio:

ν ≡ µ
M

≡ m1 m2

(m1 +m2)2 . (8)

The dimensionless parameter ν varies between 0 (extreme mass ratio case) and 1
4

(equal mass case) and plays the rôle of a deformation parameter away from the
test-mass limit.

It is well known that, at the Newtonian approximation, H0(qqq, ppp) can be thought
of as describing a ‘test particle’ of mass µ orbiting around an ‘external mass’ GM.
The EOB approach is a general relativistic generalization of this fact. It consists in
looking for an ‘effective external spacetime geometry’ geff

µν(x
λ ;GM,ν) such that the

geodesic dynamics of a ‘test particle’ of mass µ within geff
µν(x

λ ,GM,ν) is equivalent
(when expanded in powers of 1/c2) to the original, relative PN-expanded dynamics
(1).



The General Relativistic Two Body Problem and the Effective One Body Formalism 7

Let us explain the idea, proposed in [57], for establishing a ‘dictionary’ between
the real relative-motion dynamics, (1), and the dynamics of an ‘effective’ particle
of mass µ moving in geff

µν(x
λ ,GM,ν). The idea consists in ‘thinking quantum me-

chanically’2. Instead of thinking in terms of a classical Hamiltonian, H(qqq, ppp) (such
as Hrelative

3PN , Eq. (1)), and of its classical bound orbits, we can think in terms of the
quantized energy levels E(n, ℓ) of the quantum bound states of the Hamiltonian
operator H(q̂qq, p̂pp). These energy levels will depend on two (integer valued) quan-
tum numbers n and ℓ. Here (for a spherically symmetric interaction, as appropriate
to Hrelative), ℓ parametrizes the total orbital angular momentum (LLL2 = ℓ(ℓ+ 1) h̄2),
while n represents the ‘principal quantum number’ n = ℓ+ nr + 1, where nr (the
‘radial quantum number’) denotes the number of nodes in the radial wave function.
The third ‘magnetic quantum number’ m (with −ℓ ≤ m ≤ ℓ) does not enter the en-
ergy levels because of the spherical symmetry of the two-body interaction (in the
center of mass frame). For instance, the non-relativistic Newton interaction Eq. (2)
gives rise to the well-known result

E0(n, ℓ) =−1
2

µ
(

GMµ
nh̄

)2

, (9)

which depends only on n (this is the famous Coulomb degeneracy). When consider-
ing the PN corrections to H0, as in Eq. (1), one gets a more complicated expression
of the form

Erelative
3PN (n, ℓ) =−1

2
µ

α2

n2

[
1+

α2

c2

(c11

nℓ
+

c20

n2

)
+

α4

c4

( c13

nℓ3 +
c22

n2ℓ2 +
c31

n3ℓ
+

c40

n4

)
+

α6

c6

( c15

nℓ5 + . . .+
c60

n6

)]
, (10)

where we have set α ≡ GMµ/h̄ = Gm1 m2/h̄, and where we consider, for simplic-
ity, the (quasi-classical) limit where n and ℓ are large numbers. The 2PN-accurate
version of Eq. (10) had been derived by Damour and Schäfer [72] as early as 1988
while its 3PN-accurate version was derived by Damour, Jaranowski and Schäfer in
1999 [70]. The dimensionless coefficients cpq are functions of the symmetric mass
ratio ν ≡ µ/M, for instance c40 =

1
8 (145− 15ν +ν2). In classical mechanics (i.e.

for large n and ℓ), it is called the ‘Delaunay Hamiltonian’, i.e. the Hamiltonian ex-
pressed in terms of the action variables3 J = ℓh̄ = 1

2π
∮

pφ dφ , and N = nh̄ = Ir +J,
with Ir =

1
2π
∮

pr dr.

The energy levels (10) encode, in a gauge-invariant way, the 3PN-accurate rela-
tive dynamics of a ‘real’ binary. Let us now consider an auxiliary problem: the ‘ef-
fective’ dynamics of one body, of mass µ , following (modulo the Q term discussed
below) a geodesic in some ν-dependent ‘effective external’ (spherically symmetric)

2 This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechan-
ics can often help us in going to the essence of classical mechanics.
3 We consider, for simplicity, ‘equatorial’ motions with m = ℓ, i.e., classically, θ = π

2 .
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metric4

geff
µν dxµ dxν =−A(R;ν)c2 dT 2 +B(R;ν)dR2 +R2(dθ 2 + sin2 θ dφ2) . (11)

Here, the a priori unknown metric functions A(R;ν) and B(R;ν) will be constructed
in the form of expansions in GM/c2R:

A(R;ν) = 1+ ã1
GM
c2R

+ ã2

(
GM
c2R

)2

+ ã3

(
GM
c2R

)3

+ ã4

(
GM
c2R

)4

+ · · · ;

B(R;ν) = 1+ b̃1
GM
c2R

+ b̃2

(
GM
c2R

)2

+b3

(
GM
c2R

)3

+ · · · , (12)

where the dimensionless coefficients ãn, b̃n depend on ν . From the Newtonian limit,
it is clear that we should set ã1 = −2. In addition, as ν can be viewed as a defor-
mation parameter away from the test-mass limit, we require that the effective metric
(11) tend to the Schwarzschild metric (of mass M) as ν → 0, i.e. that

A(R;ν = 0) = 1−2GM/c2R = B−1(R;ν = 0) .

Let us now require that the dynamics of the “one body” µ within the effective
metric geff

µν be described by an “effective” mass-shell condition of the form

gµν
eff peff

µ peff
ν +µ2 c2 +Q(peff

µ ) = 0 ,

where Q(p) is (at least) quartic in p. Then by solving (by separation of variables)
the corresponding ‘effective’ Hamilton-Jacobi equation

gµν
eff

∂Seff

∂xµ
∂Seff

∂xν +µ2c2 +Q
(

∂S
∂xµ

)
= 0 ,

Seff =−Eeff t + Jeff φ +Seff(R) , (13)

one can straightforwardly compute (in the quasi-classical, large quantum numbers
limit) the effective Delaunay Hamiltonian Eeff(Neff,Jeff), with Neff = neff h̄, Jeff =
ℓeff h̄ (where Neff = Jeff + Ieff

R , with Ieff
R = 1

2π
∮

peff
R dR, Peff

R = ∂Seff(R)/dR). This
yields a result of the form

4 It is convenient to write the ‘effective metric’ in Schwarzschild-like coordinates. Note that the
effective radial coordinate R differs from the two-body ADM-coordinate relative distance RADM =
|qqq|. The transformation between the two coordinate systems has been determined in Refs. [57, 59].
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Eeff(neff, ℓeff) = µc2 − 1
2

µ
α2

n2
eff

[
1+

α2

c2

(
ceff

11
neffℓeff

+
ceff

20

n2
eff

)
+

α4

c4

(
ceff

13

neffℓ
3
eff

+
ceff

22

n2
effℓ

2
eff

+
ceff

31

n3
effℓeff

+
ceff

40

n4
eff

)
+

α6

c6

(
ceff

15

neffℓ
5
eff

+ . . .+
ceff

60

n6
eff

)]
, (14)

where the dimensionless coefficients ceff
pq are now functions of the unknown coeffi-

cients ãn, b̃n entering the looked for ‘external’ metric coefficients (12).

At this stage, one needs to define a ‘dictionary’ between the real (relative) two-
body dynamics, summarized in Eq. (10), and the effective one-body one, summa-
rized in Eq. (14). As, on both sides, quantum mechanics tells us that the action
variables are quantized in integers (Nreal = nh̄, Neff = neffh̄, etc.) it is most natural to
identify n = neff and ℓ= ℓeff. One then still needs a rule for relating the two different
energies Erelative

real and Eeff. Ref. [57] proposed to look for a general map between the
real energy levels and the effective ones (which, as seen when comparing (10) and
(14), cannot be directly identified because they do not include the same rest-mass
contribution5), namely

Eeff

µc2 −1 = f
(

Erelative
real
µc2

)
=

Erelative
real
µc2

(
1+α1

Erelative
real
µc2 +α2

(
Erelative

real
µc2

)2

+α3

(
Erelative

real
µc2

)3

+ . . .

)
. (15)

The ‘correspondence’ between the real and effective energy levels is illustrated in
Fig. 1.

Finally, identifying Eeff(n, ℓ)/µc2 to 1 + f (Erelative
real (n, ℓ)/µc2) yields a system

of equations for determining the unknown EOB coefficients ãn, b̃n,αn, as well as
the three coefficients z1,z2,z3 parametrizing a general 3PN-level quartic mass-shell
deformation:

Q3PN(p) =
1
c6

1
µ2

(
GM
R

)2 [
z1 ppp4 + z2 ppp2(nnn · ppp)2 + z3(nnn · ppp)4] .

[The need for introducing a quartic mass-shell deformation Q only arises at the 3PN
level.]

The above system of equations for ãn, b̃n,αn (and zi at 3PN) was studied at the
2PN level in Ref. [57], and at the 3PN level in Ref. [59]. At the 2PN level it was
found that, if one further imposes the natural condition b̃1 = +2 (so that the lin-

5 Indeed E total
real = Mc2+Erelative

real = Mc2+Newtonian terms+1PN/c2+ · · · , while Eeffective = µc2+

N +1PN/c2 + · · · .
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Fig. 1 Sketch of the correspondence between the quantized energy levels of the real and effective
conservative dynamics. n denotes the ‘principal quantum number’ (n= nr+ℓ+1, with nr = 0,1, . . .
denoting the number of nodes in the radial function), while ℓ denotes the (relative) orbital angular
momentum (LLL2 = ℓ(ℓ+ 1) h̄2). Though the EOB method is purely classical, it is conceptually
useful to think in terms of the underlying (Bohr-Sommerfeld) quantization conditions of the action
variables IR and J to motivate the identification between n and ℓ in the two dynamics.

earized effective metric coincides with the linearized Schwarzschild metric with
mass M = m1 +m2), there exists a unique solution for the remaining five unknown
coefficients ã2, ã3, b̃2,α1 and α2. This solution is very simple:

ã2 = 0 , ã3 = 2ν , b̃2 = 4−6ν , α1 =
ν
2
, α2 = 0 . (16)

At the 3PN level, it was found that the system of equations is consistent, and under-
determined in that the general solution can be parametrized by the arbitrary values
of z1 and z2. It was then argued that it is natural to impose the simplifying require-
ments z1 = 0 = z2, so that Q is proportional to the fourth power of the (effective)
radial momentum pr. With these conditions, the solution is unique at the 3PN level,
and is still remarkably simple, namely

ã4 = a4 ν , d̃3 = 2(3ν −26)ν , α3 = 0 , z3 = 2(4−3ν)ν .

Here, a4 denotes the number

a4 =
94
3

− 41
32

π2 ≃ 18.6879027 , (17)

while d̃3 denotes the coefficient of (GM/c2R)3 in the PN expansion of the combined
metric coefficient

D(R)≡ A(R)B(R) .

Replacing B(R) by D(R) is convenient because (as was mentioned above), in the
test-mass limit ν → 0, the effective metric must reduce to the Schwarzschild metric,
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namely

A(R;ν = 0) = B−1(R;ν = 0) = 1−2
(

GM
c2R

)
,

so that
D(R;ν = 0) = 1 .

The final result is that the three EOB potentials A,D,Q describing the 3PN two-
body dynamics are given by the following very simple results. In terms of the EOB
“gravitational potential”

u ≡ GM
c2R

,

A3PN(R) = 1−2u+2ν u3 +a4 ν u4 , (18)

D3PN(R)≡ (A(R)B(R))3PN = 1−6νu2 +2(3ν −26)νu3 , (19)

Q3PN(qqq, ppp) =
1
c2 2(4−3ν)ν u2 p4

r

µ2 . (20)

In addition, the map between the (real) center-of-mass energy of the binary sys-
tem Erelative

real = Hrelative = E tot
relative −Mc2 and the effective one Eeff is found to have

the very simple (but non trivial) form

Eeff

µc2 = 1+
Erelative

real
µc2

(
1+

ν
2

Erelative
real
µc2

)
=

s−m2
1 c4 −m2

2 c4

2m1 m2 c4 (21)

where s = (E tot
real)

2 ≡ (Mc2 +Erelative
real )2 is Mandelstam’s invariant s =−(p1 + p2)

2.

It is truly remarkable that the EOB formalism succeeds in condensing the compli-
cated, original 3PN Hamiltonian, Eqs. (4)–(2), into the very simple potentials A,D
and Q displayed above, together with the simple energy map Eq. (21). For instance,
at the 1PN level, the already somewhat involved Lorentz-Droste-Einstein-Infeld-
Hoffmann 1PN dynamics (Eqs. (4) and (5)) is simply described, within the EOB
formalism, as a test particle of mass µ moving in an external Schwarzschild back-
ground of mass M = m1 +m2, together with the (crucial but quite simple) energy
transformation (21). [Indeed, the ν-dependent corrections to A and D start only at the
2PN level.] At the 2PN level, the seven rather complicated ν-dependent coefficients
of Ĥ2PN(qqq, ppp), Eq. (6), get condensed into the two very simple additional contribu-
tions +2νu3 in A(u), and −6νu2 in D(u). At the 3PN level, the eleven quite com-
plicated ν-dependent coefficients of Ĥ3PN, Eq. (2), get condensed into only three
simple contributions: +a4νu4 in A(u), +2(3ν − 26)νu3 in D(u), and Q3PN given
by Eq. (20). This simplicity of the EOB results is not only due to the reformulation
of the PN-expanded Hamiltonian into an effective dynamics. Indeed, the A-potential
happens to be much simpler that it could a priori have been: (i) as already noted it
is not modified at the 1PN level, while one would a priori expect to have found a
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1PN potential A1PN(u) = 1− 2u+νa2u2 with some non zero a2; and (ii) there are
striking cancellations taking place in the calculation of the 2PN and 3PN coeffi-
cients ã2(ν) and ã3(ν), which were a priori of the form ã2(ν) = a2ν + a′2ν2, and
ã3(ν) = a3ν +a′3ν2 +a′′3ν3, but for which the ν-nonlinear contributions a′2ν2,a′3ν2

and a′′3ν3 precisely cancelled out.

The fact that the 3PN coefficient a4 in the crucial ‘effective radial potential’
A3PN(R), Eq. (18), is rather large and positive indicates that the ν-dependent non-
linear gravitational effects lead, for comparable masses (ν ∼ 1

4 ), to a last stable (cir-
cular) orbit (LSO) which has a higher frequency and a larger binding energy than
what a naive scaling from the test-particle limit (ν → 0) would suggest. Actually,
the PN-expanded form (18) of A3PN(R) does not seem to be a good representation of
the (unknown) exact function AEOB(R) when the (Schwarzschild-like) relative co-
ordinate R becomes smaller than about 6GM/c2 (which is the radius of the LSO in
the test-mass limit). By continuity with the test-mass case, one a priori expects that
A3PN(R) always exhibits a simple zero defining an EOB “effective horizon” that
is smoothly connected to the Schwarzschild event horizon at R = 2GM/c2 when
ν → 0. However, the large value of the a4 coefficient does actually prevent A3PN to
have this property when ν is too large, and in particular when ν = 1/4. It was there-
fore suggested [59] to further resum6 A3PN(R) by replacing it by a suitable Padé (P)
approximant. For instance, the replacement of A3PN(R) by7

A1
3(R)≡ P1

3 [A3PN(R)] =
1+n1u

1+d1u+d2u2 +d3u3 (22)

ensures that the ν = 1
4 case is smoothly connected with the ν = 0 limit.

The same kind of ν-continuity argument, discussed so far for the A function,
needs to be applied also to the D3PN(R) function defined in Eq. (19). A straightfor-
ward way to ensure that the D function stays positive when R decreases (since it
is D = 1 when ν → 0) is to replace D3PN(R) by D0

3(R) ≡ P0
3 [D3PN(R)], where P0

3
indicates the (0,3) Padé approximant and explicitly reads

D0
3(R) =

1
1+6νu2 −2(3ν −26)νu3 . (23)

6 The PN-expanded EOB building blocks A3PN(R),B3PN(R), . . . already represent a resummation
of the PN dynamics in the sense that they have “condensed” the many terms of the original PN-
expanded Hamiltonian within a very concise format. But one should not refrain to further resum
the EOB building blocks themselves, if this is physically motivated.
7 We recall that the coefficients n1 and (d1,d2,d3) of the (1,3) Padé approximant P1

3 [A3PN(u)] are
determined by the condition that the first four terms of the Taylor expansion of A1

3 in powers of
u = GM/(c2R) coincide with A3PN.
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3 EOB description of radiation reaction and of the emitted
waveform during inspiral

In the previous Section we have described how the EOB method encodes the conser-
vative part of the relative orbital dynamics into the dynamics of an ’effective’ parti-
cle. Let us now briefly discuss how to complete the EOB dynamics by defining some
resummed expressions describing radiation reaction effects, and the corresponding
waveform emitted at infinity. One is interested in circularized binaries, which have
lost their initial eccentricity under the influence of radiation reaction. For such sys-
tems, it is enough (in first approximation [58]; see, however, the recent results of
Bini and Damour [73]) to include a radiation reaction force in the Pφ equation of
motion only. More precisely, we are using phase space variables R,PR,φ,Pφ associ-
ated to polar coordinates (in the equatorial plane θ = π

2 ). Actually it is convenient to
replace the radial momentum PR by the momentum conjugate to the ‘tortoise’ radial
coordinate R∗ =

∫
dR(B/A)1/2, i.e. PR∗ = (A/B)1/2 PR. The real EOB Hamiltonian

is obtained by first solving Eq. (21) to get H total
real =

√
s in terms of Eeff, and then by

solving the effective Hamilton-Jacobi equation to get Eeff in terms of the effective
phase space coordinates qqqeff and pppeff. The result is given by two nested square roots
(we henceforth set c = 1):

ĤEOB(r, pr∗ ,φ) =
Hreal

EOB
µ

=
1
ν

√
1+2ν (Ĥeff −1) , (24)

where

Ĥeff =

√√√√p2
r∗ +A(r)

(
1+

p2
φ

r2 + z3
p4

r∗
r2

)
, (25)

with z3 = 2ν (4−3ν). Here, we are using suitably rescaled dimensionless (effective)
variables: r = R/GM, pr∗ = PR∗/µ , pφ = Pφ/µ GM, as well as a rescaled time t =
T/GM. This leads to equations of motion for (r,φ, pr∗ , pφ) of the form

dφ
dt

=
∂ ĤEOB

∂ pφ
≡ Ω , (26)

dr
dt

=

(
A
B

)1/2 ∂ ĤEOB

∂ pr∗
, (27)

d pφ

dt
= F̂φ , (28)

d pr∗
dt

= −
(

A
B

)1/2 ∂ ĤEOB

∂ r
, (29)

which explicitly read
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dφ
dt

=
Apφ

νr2ĤĤeff
≡ Ω , (30)

dr
dt

=

(
A
B

)1/2 1
νĤĤeff

(
pr∗ + z3

2A
r2 p3

r∗

)
, (31)

d pφ

dt
= F̂φ , (32)

d pr∗
dt

= −
(

A
B

)1/2 1
2νĤĤeff

{
A′+

p2
φ

r2

(
A′− 2A

r

)
+ z3

(
A′

r2 − 2A
r3

)
p4

r∗

}
,(33)

where A′ = dA/dr. As explained above the EOB metric function A(r) is defined
by Padé resumming the Taylor-expanded result (12) obtained from the matching
between the real and effective energy levels (as we were mentioning, one uses a
similar Padé resumming for D(r) ≡ A(r)B(r)). One similarly needs to resum F̂φ ,
i.e., the φ component of the radiation reaction which has been introduced on the
r.h.s. of Eq. (28).

Several methods have been tried during the development of the EOB formal-
ism to resum the radiation reaction F̂φ (starting from the high-order PN-expanded
results that have been obtained in the literature; see references in the Introduction
above). Here, we shall briefly explain the new, parameter-free resummation tech-
nique for the multipolar waveform (and thus for the energy flux) introduced in
Ref. [68, 69] and perfected in [64]. To be precise, the new results discussed in
Ref. [64] are twofold: on the one hand, that work generalized the ℓ = m = 2 re-
summed factorized waveform of [68, 69] to higher multipoles by using the most
accurate currently known PN-expanded results [34, 33, 35] as well as the higher
PN terms which are known in the test-mass limit [39, 40]; on the other hand, it
introduced a further resummation procedure which consists in considering a new
theoretical quantity, denoted as ρℓm(x), which enters the (ℓ,m) waveform (together
with other building blocks, see below) only through its ℓ-th power: hℓm ∝ (ρℓm(x))

ℓ.
Here, and below, x denotes the invariant PN-ordering parameter given during inspi-
ral by x ≡ (GMΩ/c3)2/3.

The main novelty introduced by Refs. [68, 69, 64] is to write the (ℓ,m) multipo-
lar waveform emitted by a circular nonspinning compact binary as the product of
several factors, namely

h(ε)ℓm =
GMν
c2R

n(ε)ℓm cl+ε(ν)x(ℓ+ε)/2Y ℓ−ε,−m
(π

2
,Φ
)

Ŝ(ε)eff Tℓmeiδℓmρℓ
ℓm. (34)

Here ε denotes the parity of ℓ+m (ε = π(ℓ+m)), i.e. ε = 0 for “even-parity” (mass-
generated) multipoles (ℓ+m even), and ε = 1 for “odd-parity” (current-generated)
ones (ℓ+m odd); n(ε)ℓm and cl+ε(ν) are numerical coefficients; Ŝ(ε)eff is a µ-normalized
effective source (whose definition comes from the EOB formalism); Tℓm is a re-
summed version [68, 69] of an infinite number of “leading logarithms” entering the
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tail effects [15, 27]; δℓm is a supplementary phase (which corrects the phase effects
not included in the complex tail factor Tℓm), and, finally, (ρℓm)

ℓ denotes the ℓ-th
power of the quantity ρℓm which is the new building block introduced in [64]. Note
that in previous papers [68, 69] the quantity (ρℓm)

ℓ was denoted as fℓm and we will
often use this notation below. Before introducing explicitly the various elements
entering the waveform (34) it is convenient to decompose hℓm as

h(ε)ℓm = h(N,ε)
ℓm ĥ(ε)ℓm , (35)

where h(N,ε)
ℓm is the Newtonian contribution (i.e. the product of the first five factors

in Eq. (34)) and
ĥ(ε)ℓm ≡ Ŝ(ε)eff Tℓmeiδℓm fℓm (36)

represents a resummed version of all the PN corrections. The PN correcting factor
ĥ(ε)ℓm , as well as all its building blocks, has the structure ĥ(ε)ℓm = 1+O(x).

The reader will find in Ref. [64] the definitions of the quantities entering the
“Newtonian” waveform h(N,ε)

ℓm , as well as the precise definition of the effective

source factor Ŝ(ε)eff , which constitutes the first factor in the PN-correcting factor ĥ(ε)ℓm .

Let us only note here that the definition of Ŝ(ε)eff makes use of EOB-defined quantities.

For instance, for even-parity waves (ε = 0) Ŝ(0)eff is defined as the µ-scaled effective

energy Eeff/µc2. [We use the “J-factorization” definition of Ŝ(ε)eff when ε = 1, i.e. for
odd parity waves.]

The second building block in the factorized decomposition is the “tail factor” Tℓm
(introduced in Refs. [68, 69]). As mentioned above, Tℓm is a resummed version of
an infinite number of “leading logarithms” entering the transfer function between
the near-zone multipolar wave and the far-zone one, due to tail effects linked to
its propagation in a Schwarzschild background of mass MADM = Hreal

EOB. Its explicit
expression reads

Tℓm =
Γ (ℓ+1−2iˆ̂k)

Γ (ℓ+1)
eπ ˆ̂ke2iˆ̂k log(2kr0), (37)

where r0 = 2GM/
√

e and ˆ̂k ≡ GHreal
EOBmΩ and k ≡ mΩ . Note that ˆ̂k differs from k by

a rescaling involving the real (rather than the effective) EOB Hamiltonian, computed
at this stage along the sequence of circular orbits.

The tail factor Tℓm is a complex number which already takes into account some
of the dephasing of the partial waves as they propagate out from the near zone to
infinity. However, as the tail factor only takes into account the leading logarithms,
one needs to correct it by a complementary dephasing term, eiδℓm , linked to sublead-
ing logarithms and other effects. This subleading phase correction can be computed
as being the phase δℓm of the complex ratio between the PN-expanded ĥ(ε)ℓm and the
above defined source and tail factors. In the comparable-mass case (ν ̸= 0), the 3PN
δ22 phase correction to the leading quadrupolar wave was originally computed in
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Ref. [69] (see also Ref. [68] for the ν = 0 limit). Full results for the subleading
partial waves to the highest possible PN-accuracy by starting from the currently
known 3PN-accurate ν-dependent waveform [35] have been obtained in [64]. For
higher-order test-mass (ν → 0) contributions, see [74, 75]. For extensions of the
(non spinning) factorized waveform of [64] see [76, 77, 78].

The last factor in the multiplicative decomposition of the multipolar waveform
can be computed as being the modulus fℓm of the complex ratio between the PN-
expanded ĥ(ε)ℓm and the above defined source and tail factors. In the comparable mass
case (ν ̸= 0), the f22 modulus correction to the leading quadrupolar wave was com-
puted in Ref. [69] (see also Ref. [68] for the ν = 0 limit). For the subleading partial
waves, Ref. [64] explicitly computed the other fℓm’s to the highest possible PN-
accuracy by starting from the currently known 3PN-accurate ν-dependent wave-
form [35]. In addition, as originally proposed in Ref. [69], to reach greater accu-
racy the fℓm(x;ν)’s extracted from the 3PN-accurate ν ̸= 0 results are completed
by adding higher order contributions coming from the ν = 0 results [39, 40]. In the
particular f22 case discussed in [69], this amounted to adding 4PN and 5PN ν = 0
terms. This “hybridization” procedure was then systematically pursued for all the
other multipoles, using the 5.5PN accurate calculation of the multipolar decompo-
sition of the gravitational wave energy flux of Refs. [39, 40].

The decomposition of the total PN-correction factor ĥ(ε)ℓm into several factors is
in itself a resummation procedure which already improves the convergence of the
PN series one has to deal with: indeed, one can see that the coefficients entering
increasing powers of x in the PN expansion of the fℓm’s tend to be systematically
smaller than the coefficients appearing in the usual PN expansion of ĥ(ε)ℓm . The reason
for this is essentially twofold: (i) the factorization of Tℓm has absorbed powers of
mπ which contributed to make large coefficients in ĥ(ε)ℓm , and (ii) the factorization of
either Ĥeff or ĵ has (in the ν = 0 case) removed the presence of an inverse square-root
singularity located at x= 1/3 which caused the coefficient of xn in any PN-expanded
quantity to grow as 3n as n → ∞.

To further improve the convergence of the waveform several resummations of
the factor fℓm(x) = 1 + cℓm1 x + cℓm2 x2 + . . . have been suggested. First, Refs. [68,
69] proposed to further resum the f22(x) function via a Padé (3,2) approximant,
P3

2 { f22(x;ν)}, so as to improve its behavior in the strong-field-fast-motion regime.
Such a resummation gave an excellent agreement with numerically computed wave-
forms, near the end of the inspiral and during the beginning of the plunge, for dif-
ferent mass ratios [68, 79, 80]. As we were mentioning above, a new route for re-
summing fℓm was explored in Ref. [64]. It is based on replacing fℓm by its ℓ-th root,
say

ρℓm(x;ν) = [ fℓm(x;ν)]1/ℓ. (38)

The basic motivation for replacing fℓm by ρℓm is the following: the leading “Newtonian-
level” contribution to the waveform h(ε)ℓm contains a factor ωℓrℓharmvε where rharm is
the harmonic radial coordinate used in the MPM formalism [12, 14]. When com-
puting the PN expansion of this factor one has to insert the PN expansion of the



The General Relativistic Two Body Problem and the Effective One Body Formalism 17

(dimensionless) harmonic radial coordinate rharm, rharm = x−1(1+ c1x+O(x2)), as
a function of the gauge-independent frequency parameter x. The PN re-expansion of
[rharm(x)]ℓ then generates terms of the type x−ℓ(1+ ℓc1x+ ....). This is one (though
not the only one) of the origins of 1PN corrections in hℓm and fℓm whose coefficients
grow linearly with ℓ. The study of [64] has pointed out that these ℓ-growing terms
are problematic for the accuracy of the PN-expansions. The replacement of fℓm by
ρℓm is a cure for this problem.

Several studies, both in the test-mass limit, ν → 0 (see Fig. 1 in [64]) and in the
comparable-mass case (see notably Fig. 4 in [65]), have shown that the resummed
factorized (inspiral) EOB waveforms defined above provided remarkably accurate
analytical approximations to the “exact” inspiral waveforms computed by numeri-
cal simulations. These resummed multipolar EOB waveforms are much closer (es-
pecially during late inspiral) to the exact ones than the standard PN-expanded wave-
forms given by Eq. (35) with a PN-correction factor of the usual “Taylor-expanded”
form

ĥ(ε)PN
ℓm = 1+ cℓm1 x+ cℓm3/2x3/2 + cℓm2 x2 + . . .

See Fig. 1 in [64], and slide 29 in my (June 2012) Prague presentation.

Finally, one uses the newly resummed multipolar waveforms (34) to define a
resummation of the radiation reaction force Fφ as

Fφ ≡− 1
Ω

F(ℓmax), (39)

where the (instantaneous, circular) GW flux F(ℓmax) is defined as

F(ℓmax) ≡ 2
16πG

ℓmax

∑
ℓ=2

ℓ

∑
m=1

(mΩ)2|Rhℓm|2. (40)

Summarizing: Eqs. (34) and (39), (40) define resummed EOB versions of the
waveform hℓm, and of the radiation reaction F̂φ , during inspiral. A crucial point is
that these resummed expressions are parameter-free. Given some current approx-
imation to the conservative EOB dynamics (i.e. some expressions for the A,D,Q
potentials) they complete the EOB formalism by giving explicit predictions for the
radiation reaction (thereby completing the dynamics, see Eqs. (26)–(29)), and for
the emitted inspiral waveform.

4 EOB description of the merger of binary black holes and of the
ringdown of the final black hole

Up to now we have reviewed how the EOB formalism, starting only from analyt-
ical information obtained from PN theory, and adding extra resummation require-
ments (both for the EOB conservative potentials A, Eq. (22), and D, Eq. (23), and
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for the waveform, Eq. (34), and its associated radiation reaction force, Eqs. (39),
(40)) makes specific predictions, both for the motion and the radiation of binary
black holes. The analytical calculations underlying such an EOB description are es-
sentially based on skeletonizing the two black holes as two, sufficiently separated
point masses, and therefore seem unable to describe the merger of the two black
holes, and the subsequent ringdown of the final, single black hole formed during
the merger. However, as early as 2000 [58], the EOB formalism went one step fur-
ther and proposed a specific strategy for describing the complete waveform emitted
during the entire coalescence process, covering inspiral, merger and ringdown. This
EOB proposal is somewhat crude. However, the predictions it has made (years be-
fore NR simulations could accurately describe the late inspiral and merger of binary
black holes) have been broadly confirmed by subsequent NR simulations. [See the
Introduction for a list of EOB predictions.] The original EOB proposal (which was
motivated partly by the closeness between the 2PN-accurate effective metric geff

µν
[57] and the Schwarzschild metric, and by the results of Refs. [66] and [67]) con-
sists of:

(i) defining, within EOB theory, the instant of (effective) “merger” of the two
black holes as the (dynamical) EOB time tm where the orbital frequency Ω(t)
reaches its maximum;

(ii) describing (for t ≤ tm) the inspiral-plus-plunge (or simply insplunge) wave-
form, hinsplunge(t), by using the inspiral EOB dynamics and waveform reviewed in
the previous Section; and

(iii) describing (for t ≥ tm) the merger-plus-ringdown waveform as a superposi-
tion of several quasi-normal-mode (QNM) complex frequencies of a final Kerr black
hole (of mass M f and spin parameter a f , self-consistency estimated within the EOB
formalism), say (

Rc2

GM

)
hringdown
ℓm (t) = ∑

N
C+

N e−σ+
N (t−tm) , (41)

with σ+
N = αN + iωN , and where the label N refers to indices (ℓ,ℓ′,m,n), with (ℓ,m)

being the Schwarzschild-background multipolarity of the considered (metric) wave-
form hℓm, with n = 0,1,2 . . . being the ‘overtone number’ of the considered Kerr-
background Quasi-Normal-Mode, and ℓ′ the degree of its associated spheroidal har-
monics Sℓ′m(aσ ,θ);

(iv) determining the excitation coefficients C+
N of the QNM’s in Eq. (41) by using

a simplified representation of the transition between plunge and ring-down obtained
by smoothly matching (following Ref. [68]), on a (2p+ 1)-toothed “comb” (tm −
pδ , . . . , tm − δ , tm, tm + δ , . . . , tm + pδ ) centered around the merger (and matching)
time tm, the inspiral-plus-plunge waveform to the above ring-down waveform.

Finally, one defines a complete, quasi-analytical EOB waveform (covering the
full process from inspiral to ring-down) as:

hEOB
ℓm (t) = θ(tm − t)hinsplunge

ℓm (t)+θ(t − tm)hringdown
ℓm (t) , (42)
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where θ(t) denotes Heaviside’s step function. The final result is a waveform that
essentially depends only on the choice of a resummed EOB A(u) potential, and, less
importantly, on the choice of resummation of the main waveform amplitude factor
f22 = (ρ22)

2.

We have emphasized here that the EOB formalism is able, in principle, start-
ing only from the best currently known analytical information, to predict the full
waveform emitted by coalescing binary black holes. The early comparisons between
3PN-accurate EOB predicted waveforms8 and NR-computed waveforms showed a
satisfactory agreement between the two, within the (then relatively large) NR uncer-
tainties [81, 82]. Moreover, as we shall discuss below, it has been recently shown
that the currently known Padé-resummed 3PN-accurate A(u) potential is able, as is,
to describe with remarkable accuracy several aspects of the dynamics of coalescing
binary black holes, [83, 84].

On the other hand, when NR started delivering high-accuracy waveforms, it be-
came clear that the 3PN-level analytical knowledge incorporated in EOB theory
was not accurate enough for providing waveforms agreeing with NR ones within
the high-accuracy needed for detection, and data analysis of upcoming GW signals.
[See, e.g., the discussion in Section II of Ref. [77].] At that point, one made use of
the natural flexibility of the EOB formalism. Indeed, as already emphasized in early
EOB work [60, 85], we know from the analytical point of view that there are (yet
uncalculated) further terms in the u-expansions of the EOB potentials A(u),D(u), . . .
(and in the x-expansion of the waveform), so that these terms can be introduced ei-
ther as “free parameter(s) in constructing a bank of templates, and [one should] wait
until” GW observations determine their value(s) [60], or as “fitting parameters and
adjusted so as to reproduce other information one has about the exact results” (to
quote Ref. [85]). For instance, modulo logarithmic corrections that will be further
discussed below, the Taylor expansion in powers of u of the main EOB potential
A(u) reads

ATaylor(u;ν) = 1−2u+ ã3(ν)u3 + ã4(ν)u4 + ã5(ν)u5 + ã6(ν)u6 + . . .

where the 2PN and 3PN coefficients ã3(ν) = 2ν and ã4(ν) = a4ν are known, but
where the 4PN, 5PN,. . . coefficients, ã5(ν), ã6(ν), . . . have not yet been calculated
(see, however, below). A first attempt was made in [85] to use numerical data (on
circular orbits of corotating black holes) to fit for the value of a (single, effective)
4PN parameter of the simple form ã5(ν) = a5ν entering a Padé-resummed 4PN-
level A potential, i.e.

A1
4(u;a5,ν) = P1

4

[
A3PN(u)+νa5u5

]
. (43)

This strategy was pursued in Ref. [86, 69] and many subsequent works. It was
pointed out in Ref. [65] that the introduction of a further 5PN coefficient ã6(ν) =

8 The new, resummed EOB waveform discussed above was not available at the time, so that these
comparisons employed the coarser “Newtonian-level” EOB waveform h(N,ε)

22 (x).
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a6ν , entering a Padé-resummed 5PN-level A potential, i.e.

A1
5(u;a5,a6,ν) = P1

5

[
A3PN(u)+νa5u5 +νa6u6

]
, (44)

helped in having a closer agreement with accurate NR waveforms.

In addition, Refs. [68, 69] introduced another type of flexibility parameters of the
EOB formalism: the non quasi-circular (NQC) parameters accounting for uncalcu-
lated modifications of the quasi-circular inspiral waveform presented above, linked
to deviations from an adiabatic quasi-circular motion. These NQC parameters are
of various types, and subsequent works [79, 80, 65, 87, 88, 89, 77] have explored
several ways of introducing them. They enter the EOB waveform in two separate
ways. First, through an explicit, additional complex factor multiplying hℓm, e.g.

f NQC
ℓm = (1+aℓm1 n1 +aℓm2 n2)exp[i(aℓm3 n3 +aℓm4 n4)]

where the ni’s are dynamical functions that vanish in the quasi-circular limit (with
n1,n2 being time-even, and n3,n4 time-odd). For instance, one usually takes n1 =
(pr∗/rΩ)2. Second, through the (discrete) choice of the argument used during the
plunge to replace the variable x of the quasi-circular inspiral argument: e.g. either
xΩ ≡ (GMΩ)2/3, or (following [90]) xφ ≡ v2

φ = (rω Ω)2 where vφ ≡ Ω rω , and
rω ≡ r[ψ(r, pφ)]

1/3 is a modified EOB radius, with ψ being defined as

ψ(r, pφ) =
2
r2

(
dA(r)

dr

)−1
1+2ν


√√√√A(r)

(
1+

p2
φ

r2

)
−1

 . (45)

For a given value of the symmetric mass ratio, and given values of the A-flexibility
parameters ã5(ν), ã6(ν) one can determine the values of the NQC parameters aℓmi ’s
from accurate NR simulations of binary black hole coalescence (with mass ratio
ν) by imposing, say, that the complex EOB waveform hEOB

ℓm (tEOB; ã5, ã6;aℓmi ) oscu-
lates the corresponding NR one hNR

ℓm (tNR) at their respective instants of “merger”,
where tEOB

merger ≡ tEOB
m was defined above (maximum of Ω EOB(t)), while tNR

merger is
defined, say, as the (retarded) NR time where the modulus |hNR

22 (t)| of the quadrupo-
lar waveform reaches its maximum. The order of osculation that one requires be-
tween hEOB

ℓm (t) and hNR
ℓm (t) (or, separately, between their moduli and their phases

or frequencies) depends on the number of NQC parameters aℓmi . For instance, aℓm1
and aℓm2 affect only the modulus of hEOB

ℓm and allow one to match both |hEOB
ℓm | and

its first time derivative, at merger, to their NR counterparts, while aℓm3 ,aℓm4 affect
only the phase of the EOB waveform, and allow one to match the GW frequency
ωEOB
ℓm (t) and its first time derivative, at merger, to their NR counterparts. The above

EOB/NR matching scheme has been developed and declined in various versions in
Refs. [79, 80, 65, 87, 88, 91, 89, 77, 92]. One has also extracted the needed matching
data from accurate NR simulations, and provided explicit, analytical ν-dependent
fitting formulas for them [65, 77, 92].
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Having so “calibrated” the values of the NQC parameters by extracting non-
perturbative information from a sample of NR simulations, one can then, for any
choice of the A-flexibility parameters, compute a full EOB waveform (from early
inspiral to late ringdown). The comparison of the latter NQC-completed EOB wave-
form to the results of NR simulations is discussed in the next Section.

5 EOB vs NR

There have been several different types of comparison between EOB and NR. For
instance, the early work [81] pioneered the comparison between a purely analyt-
ical EOB waveform (uncalibrated to any NR information) and a NR waveform,
while the early work [93] compared the predictions for the final spin of a coalescing
black hole binary made by EOB, completed by the knowledge of the energy and
angular momentum lost during ringdown by an extreme mass ratio binary (com-
puted by the test-mass NR code of [94]), to comparable-mass NR simulations [95].
Since then, many other EOB/NR comparisons have been performed, both in the
comparable-mass case [82, 86, 69, 79, 80, 65, 87], and in the small-mass-ratio case
[68, 96, 97, 88, 89]. Note in this respect that the numerical simulations of the GW
emission by extreme mass-ratio binaries have provided (and still provide) a very
useful “laboratory” for learning about the motion and radiation of binary systems,
and their description within the EOB formalism.

Here we shall discuss only two recent examples of EOB/NR comparisons, which
illustrate different facets of this comparison.

5.1 EOB[NR] waveforms vs NR ones

We explained above how one could complete the EOB formalism by calibrating
some of the natural EOB flexibility parameters against NR data. First, for any given
mass ratio ν and any given values of the A-flexibility parameters ã5(ν), ã6(ν), one
can use NR data to uniquely determine the NQC flexibility parameters ai’s. In other
words, we have (for a given ν)

ai = ai[NRdata;a5,a6] ,

where we defined a5 and a6 so that ã5(ν) = a5ν , ã6(ν) = a6ν . [We allow for some
residual ν-dependence in a5 and a6.] Inserting these values in the (analytical) EOB
waveform then defines an NR-completed EOB waveform which still depends on the
two unknown flexibility parameters a5 and a6.

In Ref. [65] the (a5,a6)-dependent predictions made by such a NR-completed
EOB formalism were compared to the high-accuracy waveform from an equal-mass
binary black hole (ν = 1/4) computed by the Caltech-Cornell-CITA group [98],
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(and then made available on the web). It was found that there is a strong degeneracy
between a5 and a6 in the sense that there is an excellent EOB-NR agreement for an
extended region in the (a5,a6)-plane. More precisely, the phase difference between
the EOB (metric) waveform and the Caltech-Cornell-CITA one, considered between
GW frequencies MωL = 0.047 and MωR = 0.31 (i.e., the last 16 GW cycles before
merger), stays smaller than 0.02 radians within a long and thin banana-like region
in the (a5,a6)-plane. This “good region” approximately extends between the points
(a5,a6) = (0,−20) and (a5,a6) = (−36,+520). As an example (which actually lies
on the boundary of the “good region”), we shall consider here (following Ref. [99])
the specific values a5 = 0,a6 = −20 (to which correspond, when ν = 1/4, a1 =
−0.036347,a2 = 1.2468). [Ref. [65] did not make use of the NQC phase flexibility;
i.e. it took a3 = a4 = 0. In addition, it used n2 = r̈/rΩ 2 and introduced a (real)
modulus NQC factor f NQC

ℓm only for the dominant quadrupolar wave ℓ= 2 = m.] We
henceforth use M as time unit. This result relies on the proper comparison between
NR and EOB time series, which is a delicate subject. In fact, to compare the NR and
EOB phase time-series ϕ NR

22 (tNR) and ϕ EOB
22 (tEOB) one needs to shift, by additive

constants, both one of the time variables, and one of the phases. In other words, we
need to determine τ and α such that the “shifted” EOB quantities

t ′EOB = tEOB + τ , ϕ
′EOB
22 = ϕ EOB

22 +α (46)

“best fit” the NR ones. One convenient way to do so is first to “pinch” (i.e. constrain
to vanish) the EOB/NR phase difference at two different instants (corresponding to
two different frequencies ω1 and ω2). Having so related the EOB time and phase
variables to the NR ones we can straigthforwardly compare the EOB time series to
its NR correspondant. In particular, we can compute the (shifted) EOB–NR phase
difference

∆ ω1,ω2ϕ EOBNR
22 (tNR)≡ ϕ

′EOB
22 (t ′EOB)−ϕ NR

22 (tNR). (47)

Figure 2 compares9 (the real part of) the analytical EOB metric quadrupolar wave-
form Ψ EOB

22 /ν to the corresponding (Caltech-Cornell-CITA) NR metric waveform
Ψ NR

22 /ν . [Here, Ψ22 denotes the Zerilli-normalized asymptotic quadrupolar wave-
form, i.e. Ψ22 ≡ R̂h22/

√
24 with R̂ = Rc2/GM.] This NR metric waveform has

been obtained by a double time-integration (following the procedure of Ref. [80])
from the original, publicly available, curvature waveform ψ22

4 [98]. Such a curva-
ture waveform has been extrapolated both in resolution and in extraction radius.
The agreement between the analytical prediction and the NR result is striking, even
around the merger. See Fig. 3 which closes up on the merger. The vertical line indi-
cates the location of the EOB-merger time, i.e., the location of the maximum of the
orbital frequency.

The phasing agreement between the waveforms is excellent over the full time
span of the simulation (which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over the full span, apart from

9 The two “pinching” frequencies used for this comparison are Mω1 = 0.047 and Mω2 = 0.31.
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Fig. 2 This figure illustrates the comparison (made in Refs. [65, 99]) between the (NR-completed)
EOB waveform (Zerilli-normalized quadrupolar (ℓ=m= 2) metric waveform (42) with parameter-
free radiation reaction (39) and with a5 = 0, a6 = −20) and one of the most accurate numerical
relativity waveform (equal-mass case) nowadays available [98]. The phase difference between the
two is ∆ϕ ≤ ±0.01 radians during the entire inspiral and plunge, which is at the level of the
numerical error.
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Fig. 3 Close up around merger of the waveforms of Fig. 2. Note the excellent agreement between
both modulus and phasing also during the ringdown phase.

two cycles after merger where one can notice a difference. More precisely, the phase
difference, ∆ϕ = ϕ EOB

metric −ϕ NR
metric, remains remarkably small (∼±0.02 radians) dur-

ing the entire inspiral and plunge (ω2 = 0.31 being quite near the merger). By com-
parison, the root-sum of the various numerical errors on the phase (numerical trun-
cation, outer boundary, extrapolation to infinity) is about 0.023 radians during the
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inspiral [98]. At the merger, and during the ringdown, ∆ϕ takes somewhat larger
values (∼ ±0.1 radians), but it oscillates around zero, so that, on average, it stays
very well in phase with the NR waveform whose error rises to ±0.05 radians during
ringdown. In addition, Ref. [65] compared the EOB waveform to accurate numeri-
cal relativity data (obtained by the Jena group [80]) on the coalescence of unequal
mass-ratio black-hole binaries. Again, the agreement was good, and within the nu-
merical error bars.

This type of high-accuracy comparison between NR waveforms and EOB[NR]
ones (where EOB[NR] denotes a EOB formalism which has been completed by
fitting some EOB-flexibility parameters to NR data) has been pursued and extended
in Ref. [77]. The latter reference used the “improved” EOB formalism of Ref. [65]
with some variations (e.g. a third modulus NQC coefficient ai, two phase NQC
coefficients, the argument xΩ = (MΩ)2/3 in (ρTaylor

ℓm (x))ℓ, eight QNM modes) and
calibrated it to NR simulations of mass ratios q=m2/m1 = 1,2,3,4 and 6 performed
by the Caltech-Cornell-CITA group [100, 56]. They considered not only the leading
(ℓ,m) = (2,2) GW mode, but the subleading ones (2,1),(3,3),(4,4) and (5,5).
They found that, for this large range of mass ratios, EOB[NR] (with suitably fitted,
ν-dependent values of a5 and a6) was able to describe the NR waveforms essentially
within the NR errors. This confirms the usefulness of the EOB formalism in helping
the detection and analysis of upcoming GW signals.

Here, having in view GW observations from ground-based interferometric de-
tectors we focussed on comparable-mass systems. The EOB formalism has also
been compared to NR results in the extreme mass-ratio limit ν ≪ 1. In particular,
Ref. [88] found an excellent agreement between the analytical and numerical results.

5.2 EOB[3PN] dynamics vs NR one

Let us also mention other types of EOB/NR comparisons. Recently, two examples of
EOB/NR comparisons have been performed directly at the level of the dynamics of a
binary black hole, rather than at the level of the waveform. Moreover, contrary to the
waveform comparisons of the previous subsection which involved an NR-completed
EOB formalism (“EOB[NR]”), the dynamical comparisons we are going to discuss
involve the purely analytical 3PN-accurate EOB formalism (“EOB[3PN]”), without
any NR-based improvement.

First, Le Tiec et al. [83] have extracted from accurate NR simulations of slightly
eccentric binary black-hole systems (for several mass ratios q = m1/m2 between
1/8 and 1) the function relating the periastron-advance parameter

K = 1+
∆Φ
2π

,

(where ∆Φ is the periastron advance per radial period) to the dimensionless aver-
aged angular frequency MΩφ (with M = m1 +m2 as above). Then they compared
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the NR-estimate of the mass-ratio dependent functional relation

K = K(MΩφ ;ν) ,

where ν = q/(1+q)2, to the predictions of various analytic approximation schemes:
PN theory, EOB theory and two different ways of using GSF theory. Let us only
mention here that the prediction from the purely analytical EOB[3PN] formalism for
K(MΩφ ;ν) [101] agreed remarkably well (essentially within numerical errors) with
its NR estimate for all mass ratios, while, by contrast, the PN-expanded prediction
for K(MΩφ ;ν) [70] showed a much poorer agreement, especially as q moved away
from 1.

Second, Damour, Nagar, Pollney and Reisswig [84] have recently extracted from
accurate NR simulations of black-hole binaries (with mass ratios q = m2/m1 = 1,2
and 3) the gauge-invariant relation between the (reduced) binding energy E =
(E tot −M)/µ and the (reduced) angular momentum j = J/(GµM) of the system.
Then they compared the NR-estimate of the mass-ratio dependent functional rela-
tion

E = E( j;ν)

to the predictions of various analytic approximation schemes: PN theory and var-
ious versions of EOB theory (some of these versions were NR-completed). Let
us only mention here that the prediction from the purely analytical, 3PN-accurate
EOB[3PN] for E( j;ν) agreed remarkably well with its NR estimate (for all mass
ratios) essentially down to the merger. This is illustrated in Fig. 4 for the q = 1 case.
By contrast, the 3PN expansion in (powers of 1/c2) of the function E( j;ν) showed
a much poorer agreement (for all mass ratios).

6 Other developments

6.1 EOB with spinning bodies

We lack space here for discussing the extension of the EOB formalism to binary sys-
tems made of spinning bodies. Let us start by mentionning that the spin-extension
of the EOB formalism was initiated in Ref. [60], that the first EOB-based analyt-
ical calculation of a complete waveform from a spinning binary was performed in
Ref. [61], and that the first attempt at calibrating a spinning EOB model to accurate
NR simulations of spinning (non precessing) black-hole binaries was presented in
[102]. In addition, several formal aspects related to the inclusion of spins in the EOB
formalism have been discussed in Refs. [103, 104, 105, 106, 107] (see references
within these papers for PN works dealing with spin effects) and a generalization of
the factorized multipolar waveform of Ref. [64] to spinning, non-precessing binaries
has been constructed in Refs. [76, 78].
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Fig. 4 Comparison (made in [84]) between various analytical estimates of the energy-angular mo-
mentum functional relation and its numerical-relativity estimate (equal-mass case). The standard
“Taylor-expanded” 3PN E( j) curve shows the largest deviation from NR results, especially at low
j’s, while the two (adiabatic and nonadiabatic) 3PN-accurate, non-NR-calibrated EOB E( j) curves
agree remarkably well with the NR one.

6.2 EOB with tidally deformed bodies

In binary systems comprising neutron stars, rather than black holes, the tidal de-
formation of the neutron star(s) will significantly modify the phasing of the emit-
ted gravitational waveform during the late inspiral. As GW’s from binary neutron
stars are expected sources for upcoming ground-based GW detectors, it is important
to extend the EOB formalism by including tidal effects (see [108] and references
therein). This extension has been defined in Refs. [109, 110]. The comparison be-
tween this tidal-extended EOB and state-of-the-art NR simulations of neutron-star
binaries has been discussed in Refs. [111, 112]. It appears from these comparisons
that the tidal-extended EOB formalism is able to describe the motion and radiation
of neutron-star binaries within NR errors. More accurate simulations will be needed
to ascertain whether one needs to calibrate some higher-order flexibility parameters
of the tidal-EOB formalism, or whether the currently known analytic accuracy is
sufficient.
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6.3 EOB and GSF

We mentioned in the Introduction that GSF theory has recently opened a new source
of information on the general relativistic two-body problem. Let us briefly mention
here that there has been, recently, a quite useful transfer of information from GSF
theory to EOB theory. The program of using GSF-theory to improve EOB-theory
was first highlighted in Ref. [101]. That work pointed to several concrete gauge-
invariant calculations (within GSF theory) that would provide accurate information
about the O(ν) contributions to several EOB potentials. More precisely, let us de-
fine the functions a(u) and d̄(u) as the ν-linear contributions to the EOB potentials
A(u;ν) and D(u;ν)≡ D−1(u;ν):

A(u;ν) = 1−2u+ν a(u)+O(ν2) ,

D(u;ν) = (AB)−1 = 1+ν d̄(u)+O(ν2) .

Ref. [101] has shown that a computation of the GSF-induced correction to the peri-
astron advance of slightly eccentric orbits would allow one to compute the following
combination of EOB functions

ρ̄(u) = a(u)+ua′(u)+
1
2

u(1−2u)a′′(u)+(1−6u) d̄(u) .

The GSF-calculation of the EOB function ρ̄(u) was then performed in Ref. [113]
(in the range 0 ≤ u ≤ 1

6 ).

More recently, a series of works by Le Tiec and collaborators [114, 115, 116]
have (through an indirect route) shown how GSF calculations could be used to com-
pute the EOB ν-linear a(u) function separately from the d̄(u) one. Ref. [116] then
gave a fitting formula for a(u) over the interval 0 ≤ u ≤ 1

5 as well as accurate es-
timates of the coefficients of the Taylor expansion of a(u) around u = 0 (corre-
sponding to the knowledge of the PN expansion of a(u) to a very high PN order).
Very recently, Ackay et al. [117] succeeded in accurately computing (through GSF
theory) the EOB a(u) function over the larger interval 0 ≤ u ≤ 1

3 . It was (surpris-
ingly) found that a(u) diverges like a(u) ≈ 0.25(1− 3u)−1/2 at the light-ring limit
u →

( 1
3

)−
. The meaning for EOB theory of this singular behavior of a(u) at the

light-ring is discussed in detail in Ref. [117].

6.4 Toward further improvements to EOB

Let us finally mention some avenues for further progress in EOB theory.

Logarithmic contributions to the A(u) and D(u) functions have been recently
computed at the 4PN level [101, 118] and even the 5PN one [119, 116]. They have
been incorporated in a recent, improved implementation of the EOB formalism [92].
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Two groups have embarked on a calculation of the (full) conservative dynamics
at the 4PN level [120, 121]. If they succeed, it will be important to translate their
gauge-dependent results in the gauge-invariant form used in EOB theory. [Remem-
ber that EOB theory is essentially based on the gauge-invariant Delaunay Hamilto-
nian H(Ia).]

More generally, let us emphasize that the EOB formalism provides a convenient,
gauge-invariant way of packaging both the conservative dynamics and the multipo-
lar waveform. This EOB packaging has often turned out to be very economical. We
recommend that authors computing high-order PN corrections to either the dynam-
ics or the waveform reexpress their results in terms of the EOB building blocks.

For instance, Jaranowski and Schaëfer [121] have recently given a partial result
at 4PN, expressed in terms of the (gauge-invariant) function E(MΩφ ;ν). In terms
of this function, the 4PN contribution is a polynomial of the fourth degree in ν ,
namely, with x ≡ (MΩφ)

2/3 and

E(x;ν) = −1
2

µc2x(1+ e1PN(ν)x+ e2PN(ν)x2 + e3PN(ν)x3

+e4PN(ν ; lnx)x4 +O(x5 lnx)),

they found

e4PN(ν ; lnx) =−3969
128

+ c1ν + c2ν2 +
301
1728

ν3 +
77

31104
ν4 +

448
15

ν lnx, (48)

where they could not compute the values of the coefficients c1 and c2 of the terms
linear and quadratic in ν , but only the contributions cubic and quartic in ν . We
wish to point out that their result is re-expressed in a more economical (and more
informative) way in terms of the basic EOB potential A(u;ν). Indeed, in terms of
the PN expansion, of A(u;ν),

ATaylor(u;ν) = 1−2u+ ã3(ν)u3 + ã4(ν)u4 + ã5(ν ; lnu)u5 + ã6(ν ; lnu)u6 + . . .

the information contained in the above result can be entirely re-expressed in terms
of the 4PN-level coefficient ã5(ν; lnu). When doing this re-expression, one then
finds that the information content of Eq. (48) is that the 4PN-level EOB coefficient
ã5(ν; lnu) is no more than quadratic in ν , i.e.

ã5(ν; lnu) = (a5 +
64
5

lnu)ν +a′5ν2 ,

without contributions of degree ν3 and ν4. We recall that similar cancellations
of higher νn terms were found at lower PN orders in the EOB A(u;ν) function.
Namely, they were found to contain only terms linear in ν , while ã3(ν) could a
priori have been quadratic in ν , and ã4(ν) could a priori have been cubic in ν . The
fact that similar remarkable cancellations still hold, according to the result of [121],
at the 4PN level, is a clear indication that the EOB packaging of information of the
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dynamics in the A(u;nu) potential is quite compact. Indeed, it says that the two com-
plicated terms 301

1728 ν3 + 77
31104 ν4 in the energy function are already encoded in the

structure of the EOB formalism. Finally, note that the full gauge-invariant content
of a 4PN computation of the dynamics, when interpreted within the EOB formal-
ism, is described by only three EOB terms: the coefficient ã5(ν; lnu) in A(u;ν), an
analogous coefficient ˜̄d4(ν ; lnu) in D̄(u;ν), and an additional contribution to Q(p).

Regarding the waveform, let us mention another recent example where it would
have been useful and clarifying to use the EOB packaging. Namely, when re-
expressing it in terms of the factorized EOB waveform, the new content of the re-
cent 3.5PN level computation by Faye, Marsat, Blanchet, and Iyer [122] of the PN-
expanded quadrupolar waveform h22, is entirely contained in an additional 3.5PN-
level contribution to the supplementary phase, namely δ22 = (30995/1134ν +
962/135ν2)x7/2. Indeed, the 3.5PN-level contributions to the modulus computed
in[122] were already included in the factorized EOB waveform of Ref. [65].

7 Conclusions

We hope that this brief review has made it clear that:

1. There is a complementarity between the various current approaches to the
general relativistic two-body problem: post-Newtonian, Effective One Body, grav-
itational self-force and numerical relativity simulations (of both comparable-mass
and extreme-mass-ratio systems).

2. The effective one body formalism offers a convenient framework for combin-
ing, in a synergetic manner, information coming from the other approaches. This
formalism seems to constitute an efficient way to analytically describe the motion
and radiation of circularized10 binaries, and to provide accurate gravitational wave
templates for detection and data analysis.

3. The general relativistic two-body problem is more lively than ever. It pro-
vides an example of Poincaré’s sentence: “Il n’y a pas de problèmes résolus, il y a
seulement des problèmes plus ou moins résolus.” [“There are no (definitely) solved
problems, there are only more-or-less solved problems.”]
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62. E. Brézin, C. Itzykson, J. Zinn-Justin, Relativistic balmer formula including recoil effects,
Phys. Rev. D 1, 2349 (1970)

63. T. Damour, B.R. Iyer, B.S. Sathyaprakash, Improved filters for gravitational waves from
inspiralling compact binaries, Phys. Rev. D 57, 885 (1998)

64. T. Damour, B.R. Iyer, A. Nagar, Improved resummation of post-Newtonian multipolar wave-
forms from circularized compact binaries, Phys. Rev. D 79, 064004 (2009)

65. T. Damour, A. Nagar, An improved analytical description of inspiralling and coalescing
black-hole binaries, Phys. Rev. D 79, 081503 (2009)

66. M. Davis, R. Ruffini, J. Tiomno, Pulses of gravitational radiation of a particle falling radially
into a Schwarzschild black hole, Phys. Rev. D 5, 2932 (1972)

67. R.H. Price, J. Pullin, Colliding black holes: The close limit, Phys. Rev. Lett. 72, 3297 (1994)
68. T. Damour, A. Nagar, Faithful Effective-One-Body waveforms of small-mass-ratio coalescing

black-hole binaries, Phys. Rev. D 76, 064028 (2007)
69. T. Damour, A. Nagar, Comparing Effective-One-Body gravitational waveforms to accurate

numerical data, Phys. Rev. D 77, 024043 (2008)
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