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Abstract We shall show that the self-interaction of a field can be geometrized
together with its perturbations in the sense that both dynamics are controlled by the
same metric.

1 Introduction

The main idea in the analogue models program is to simulate gravitational config-
urations in condense matter physics or using electromagnetic fields in non-linear
medium (see [1]-[2]). Hence, to study some of the features of the general relativity
theory using controlled laboratory systems. The connection can be made once we
notice that the evolution of the perturbations of a given field can be described in a
geometrical language. Even though, the majority of works in the literature concern
only the perturbative regime, it has been shown in Ref. [3] that one can also ge-
ometrize the dynamics of the background field simultaneously to its perturbations.

The geometrization of the perturbations dynamics alone has only a kinematical
value. It is a change of description valid only for the perturbations. Thus, the effec-
tive metric that defines the evolution of the perturbations cannot be interpreted as a
real geometry as it is done in general relativity.

For a scalar nonlinear theory with L(φ ,w), where w ≡ γµν ∂µ φ ∂ν φ is the Ki-
netic term, the equation of motion is a quasi-linear second order partial differential
equation for φ . Its principal part that defines the effective metric

ĝµν ≡ Lwγµν +2Lww∂ µ φ∂ ν φ ,
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determines the causal structure of the theory (see [4] for details). Furthermore, by
constructing a Riemannian affine structure such that ĝαβ ||ν =0, the rays describing
the perturbations of the scalar field follow null geodesics in the effective metric
ĝµν . Therefore, the effective metric determines the causal structure and controls the
propagation of the field’s excitations in the geometrical optics limit.

1.1 Geometrization of Field Dynamics

The general approach in analogue models deals simultaneously with two met-
rics, one for the perturbations and another for the background. The geometrization
scheme is valid only for the perturbations while the background field works only as
a medium which defines the effective metric. This is probably the main difficulty
in trying to consider the effective metric as an emergent metric with the status of a
Riemannian metric as in general relativity.

A considerable improvement in this program is to include the background field
in the geometric description. Thus, we want to define an emergent metric that si-
multaneously encodes the dynamics of the background field and its perturbations.

It has been shown in Ref. [3] that any scalar non-linear theory described by the
Lagrangian L(w,φ) is equivalent to the field φ propagating in an emergent spacetime
with metric ĥµν(φ,∂φ) and a suitable source j(φ ,∂φ). The emergent metric ĥµν
and the source field j are both constructed explicitly in terms of the field and its
derivatives. In addition, in the optical limit, the wave vectors associated with its
perturbations follow null geodesics in the same ĥµν metric. Therefore, there is an
emergent spacetime “generated” by the non-linearity of the scalar field dynamics
which dictates the propagation of the scalar field.

The equation of motion for the scalar field can be written as

1√
−γ

∂µ

(√
−γ Lw ∂ν φ γµν

)
=

1
2

Lφ . (1)

We shall define the emergent metric and its inverse as

ĥµν ≡ Lw√
1+βw

(
γµν −

β
1+βw

φ,µ φ,ν

)
, with β ≡ 2Lww/Lw

ĥµν ≡
√

1+βw
Lw

(γµν +βφ ,µ φ ,ν) .

To show that the above equation can be written as a Klein-Gordon in the ĥµν met-

ric, we need to calculate its determinant which amounts to
√
−ĥ =

L2
w

(1+βw)3/2

√
−γ .

Therefore, a straightforward calculation shows that√
−ĥĥµν ∂ν φ =

√
−γ̂Lwγµν ∂ν φ . (2)
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Comparing the above equation with (1), we see that

□ĥφ = j(φ ,∂φ) , with j(φ,∂φ)≡
Lφ

2L2
w
(1+βw)3/2 . (3)

The last but very important point is to show that the effective metric associated
with the perturbations is the same as defined above. This is straightforward once we

realize that ĥµν and ĝµν are conformally related, i.e. ĥµν =

√
1+βw
L2

w
ĝµν . Thus, the

rays also propagate as null geodesics in ĥµν .
The emergent metric ĥµν encodes simultaneously the dynamics of the nonlin-

ear field and its perturbations. This result goes further in the analogue program
inasmuch it includes the dynamics of the background field. Note however that it
is imperative that the non-linearity should be in the kinetic term. Algebraic non-
linearities such as L(w,φ) = w+V (φ) with V (φ) any function of the scalar field,
trivialize the effective metric in the form of the Minkowski metric. Thus, it is the
non-linearity in w that is essential to generate the curved emergent spacetime. Ad-
ditionally, in the other sense, in the particular case of a theory where the Lagrangian
does not depend explicitly on φ , i.e. L(w), equation (3) reduces to a “free” wave
propagating in a curved spacetime generated by itself

□ĥφ = 0 . (4)

We have used the term “free” field above but one should keep in mind that
the emergent metric depends non-trivially on the scalar field φ . Thus, the above
“free” Klein-Gordon equation is actually a complicated non-linear equation for φ .
Notwithstanding, as we have discussed in section 1, there is a similar situation in
general relativity when we use the term free scalar field. There, the metric appearing
in the klein-gordon equation brings information from Einstein’s equation that also
depends on φ , hence making the coupled system a very non-linear and involved
system of equations (see [3] for details).

2 General remarks

The early proposal of the general theory of relativity to encode the gravitational
interactions within the metrical structure of the spacetime is strongly supported by
the universality of the interaction and the equality between inertial and gravitational
masses. In this manner, once this identification is done, the evolution of a particle
in flat spacetime subjugated to gravitational forces is equivalent to a Riemannian
curved spacetime free of any force. In this scenario there is a unique metric that
works as a background structure where the dynamics of all fields are defined.

We have argued that the non-linearities in the kinetic term of the scalar field also
allow us to define a curved spacetime which incorporates its dynamics. The main
difference from general relativity is that the metric thus defined depends explicitly
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on the scalar field while in GR the spacetime metric depends only implicitly through
Einstein’s equations. In addition, we don’t have any guarantees that this metric is
universal in the sense that all fields would incorporate it in their dynamics. On the
contrary, this result seems to show that the geometrization of each non-linear the-
ory would define different metrics. Nevertheless, the possibility of defining a single
metric for interacting non-linear fields is not excluded. If we consider two inter-
acting non-linear fields it might be possible to define a single Riemannian metric
that encodes both non-linearities. Notwithstanding, the inclusion of interaction is a
non-trivial step that deserves careful analysis in the future.
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