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Abstract We discuss the role of the canonical superenergy tensors.

1 Introduction

In the framework of general relativity (GR), as a consequence of the Einstein Equiv-
alence Principle (EEP), the gravitational field has non-tensorial strengths Γ i

kl = {i
kl}

and admits no energy-momentum tensor. One can only attribute to this field gravi-
tational energy-momentum pseudotensors. The leading object of such a kind is the
canonical gravitational energy-momentum pseudotensor Et k

i proposed already in
past by Einstein. This pseudotensor is a part of the canonical energy-momentum
complex EK k

i in GR.
The canonical complex EK k

i can easily be obtained by rewriting Einstein equa-
tions to the superpotential form

EK k
i :=

√
|g|

(
T k

i +E t k
i
)
= FU [kl]

i ,l , (1)

where T ik = T ki is the symmetric energy-momentum tensor for matter, g = det[gik],
and

Et k
i =

c4

16πG

{
δ k

i gms(Γ l
mrΓ r

sl −Γ r
msΓ l

rl
)

+ gms
,i
[
Γ k

ms −
1
2
(
Γ k

t pgt p −Γ l
tl g

kt)gms

− 1
2
(
δ k

s Γ l
ml +δ k

mΓ l
sl
)]}

;
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FU [kl]
i =

c4

16πG
gia√
|g|

[(
−g

)(
gkaglb −glagkb)]

,b. (2)

Et k
i are components of the canonical energy-momentum pseudotensor for gravita-

tional field, and FU [kl]
i is von Freud superpotential.

EK k
i =

√
|g|

(
T k

i +E t k
i
)

(3)

are components of the Einstein canonical energy-momentum complex for matter and
gravity.

In consequence of (1) the complex EK k
i satisfies local conservation laws

EK k
i ,k ≡ 0. (4)

In very special cases one can obtain reasonable integral conservation laws from
these local conservation laws. Additionally, one can also introduce the canonical
superenergy tensors. This was done in past in a series of our articles (see, e.g.,[1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11] and references therein).

It appears that the idea of the superenergy tensors is universal: to any physical
field having an energy-momentum tensor or pseudotensor one can attribute a corre-
sponding superenergy tensor.

2 The canonical superenergy tensors

Here we give a short description of the general, constructive definition of the su-
perenergy tensor S b

a applicable to gravitational field and to any matter field. The
definition uses locally Minkowskian structure of the spacetime and, therefore, it
fails in a spacetime with torsion, e.g., in a Riemann-Cartan spacetime.

In the normal Riemann coordinates NRC(P) we define (pointwise)

S (b)
(a) (P) = S b

a := (−) lim
Ω→P

∫
Ω

[
T (b)
(a) (y)−T (b)

(a) (P)
]

dΩ

1/2
∫
Ω

σ(P;y)dΩ
, (5)

where

T (b)
(a) (y) := T k

i (y)ei
(a)(y)e

(b)
k (y),

T (b)
(a) (P) := T k

i (P)ei
(a)(P)e

(b)
k (P) = T b

a (P)

are physical or tetrad components of the pseudotensor or tensor field which de-
scribes an energy-momentum distribution, and

{
yi
}

are normal coordinates. ei
(a)(y),
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e (b)
k (y) denote an orthonormal tetrad ei

(a)(P) = δ i
a and its dual e (a)

k (P) = δ a
k , paral-

lelly propagated along geodesics through P (P is the origin of the NRC(P)).
We have

ei
(a)(y)e

(b)
i (y) = δ b

a . (6)

For a sufficiently small 4-dimensional domain Ω which surrounds P we require∫
Ω

yidΩ = 0,
∫
Ω

yiykdΩ = δ ikM, (7)

where
M =

∫
Ω

(y0)2dΩ =
∫
Ω

(y1)2dΩ =
∫
Ω

(y2)2dΩ =
∫
Ω

(y3)2dΩ (8)

is a common value of the moments of inertia of the domain Ω with respect to the
subspaces yi = 0, (i = 0,1,2,3).

As Ω we can take, e.g., a sufficiently small ball centered at P:

(y0)2 +(y1)2 +(y2)2 +(y3)2 ≤ R2, (9)

which for an auxiliary positive-definite metric

hik := 2vivk −gik, (10)

can be written in the form
hikyiyk ≤ R2. (11)

A fiducial observer O is at rest at the beginning P of the Riemann normal coordinates
NRC(P) and its four- velocity is vi = ∗ δ i

o, where ∗ means that equation is valid
only in special coordinates. In [3] σ(P;y) denotes the two-point world function
introduced by J.L. Synge [12]:

σ(P;y) = ∗1
2
(
yo2 − y12 − y22 − y32)

. (12)

The world function σ(P;y) can be defined covariantly by the eikonal-like equa-
tion [12]

gikσ,iσ,k = 2σ , σ,i := ∂iσ , (13)

together with requirements

σ(P;P) = 0, ∂iσ(P;P) = 0. (14)

The ball Ω can also be given by the inequality

hikσ,iσ,k ≤ R2. (15)
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Tetrad components and normal components are equal at P, so, we will write the
components of any quantity attached to P without tetrad brackets, e.g., we will write
S b

a (P) instead of S (b)
(a) (P) and so on.

If T k
i (y) are the components of an energy-momentum tensor of matter, then we

get from (5)

mS b
a (P;vl) =

(
2v̂l v̂m − ĝlm)∇l∇mT̂ b

a = ĥlm∇l∇mT̂ b
a . (16)

Hat over a quantity denotes its value at P, and ∇ means covariant derivative.
Tensor mS b

a (P;vl) is called the canonical superenergy tensor for matter.
For the gravitational field, substitution of the canonical Einstein energy-momen-

tum pseudotensor as T k
i in (5) gives

gS b
a (P;vl) = ĥlmŴ b

a lm, (17)

where

W b
a lm =

2α
9
[
Bb

alm +Pb
alm

− 1
2

δ b
a Ri jk

m
(
Ri jkl +Rik jl

)
+2δ b

a β 2E(l|gEg
|m)

− 3β 2Ea(l|E
b
|m)+2βRb

(a|g|l)E
g
m
]
.

Here α = c4

16πG = 1
2β , and

E k
i := T k

i − 1
2

δ k
i T (18)

is the modified energy-momentum tensor of matter 1.
On the other hand

Bb
alm := 2Rbik

(l|Raik|m)−
1
2

δ b
a Ri jk

lRi jkm (19)

are the components of the Bel-Robinson tensor (BRT), while

Pb
alm := 2Rbik

(l|Raki|m)−
1
2

δ b
a R jik

lR jkim (20)

is the Bel-Robinson tensor with “transposed” indices (ik).
In vacuum gS b

a (P;vl) takes the simpler form

gS b
a (P;vl) =

8α
9

ĥlm(Ĉbik
(l|Ĉaik|m)−

1
2

δ b
a Ĉi(kp)

(l|Ĉikp|m)

)
. (21)

Here Ca
blm denotes components of the Weyl tensor.

Some remarks:

1 In terms of E k
i Einstein equations read R k

i = βE k
i .
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1. in vacuum the quadratic form gS b
a vavb, where vava = 1, is positive-definite. This

form gives the gravitational superenergy density εg for a fiducial observer O.
2. In general, the canonical superenergy tensors are uniquely determined only

along the world line of an observer O. But in special cases, e.g., in Schwarz-
schild spacetime or in Friedmann universes, when there exists a physically and
geometrically distinguished four-velocity field vi(x), one can introduce, in an
unique way, unambiguous fields gS k

i (x;vl) and mS k
i (x;vl).

3. It can be shown that the superenergy densities εg, εm, which have dimension
Joule

(meter)5 , exactly correspond to the Appel’s energy of acceleration 1
2 aa. The Ap-

pel’s energy of acceleration plays the fundamental role in Appel’s approach to
classical mechanics [13, 14, 15].

4. We have proposed, in our previous papers, to use the tensor gS k
i (P;vl) as grav-

itational energy-momentum tensor.
5. We have used the canonical superenergy tensors gS k

i and mS k
i to local (and

also to global) analysis of some well-known solutions to the Einstein equa-
tions like Schwarzschild, Kerr, Friedmann, Gödel, Kasner, Bianchi I, de Sit-
ter and anti-de Sitter solutions. The obtained results were interesting (see
[1, 2, 3, 4, 5, 7, 8, 11]), e.g., in Gödel universes the sign of the superenergy den-
sity εs := εg+εm depends on causality (εs < 0) and non-causality (εs > 0), and,
in Schwarzschild spacetime the integral exterior superenergy S is connected
with Hawking temperature T of the Schwarzschild black hole: S = 8πkc3

9h̄G T . We
have also studied the transformation rules for the canonical superenergy tensors
under conformal rescaling of the metric gik(x) [8, 16].

6. The idea of the superenergy tensors can be extended on angular momentum
(see, [3, 10]). The angular supermomentum tensors do not depend on a radius
vector and, in gravitational case, they depend only on “spinorial part” of the
suitable gravitational angular momentum pseudotensor.

7. As a result of an averaging the tensors gS b
a (P;vl) and mS b

a (P;vl), in general, do
not satisfy any local conservation laws. Only in a symmetric spacetime or in a
spacetime which has constant curvature one can get[

gS b
a (P;vl)

]
,b = 0. (22)

8. There exists an exchange of the canonical superenergy between gravity and
matter in the following sense. Let us consider the consequence of the equations
(4) (

∆ (4)
E K k

i
)
,k =

[(
∆ (4)(

√
|g|Et k

i
)
+∆ (4)(√|g|T k

i
)]

,k = 0, (23)

where ∆ (4) := (∂0)
2 +(∂1)

2 +(∂2)
2 +(∂3)

2.
The quantities (with total balance equal to zero)

∆ (4)(√|g|et
k

i
)
, ∆ (4)(√|g|T k

i
)

(24)
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have dimensions of the canonical superenergy and, when taken at the origin P
of the NRC(P) and written covariantly, then they coincide with the canonical
superenergy tensors gS k

i (P;vl), mS k
i (P;vl) respectively.

9. Recently we have noticed that the total superenergy density is positive-definite
or null for known stable solutions to the Einstein equations and negative-definite
for unstable solutions. The physical meaning of this fact is under study.

Changing the constructive definition (5) to the form

< T b
a (P)>:= lim

ε→0

∫
Ω

[
T (b)
(a) (y)−T (b)

(a) (P)
]
dΩ

ε2/2
∫
Ω

dΩ
, (25)

where ε := R
L > 0 (equivalently R = εL) is a real parameter and L is a dimen-

sional constant:[L] = m, one obtains the averaged relative energy-momentum ten-
sors. Namely, from (25) one obtains:

<m T b
a (P;vl)>=m S b

a (P;vl)
L2

6
, (26)

for matter and

<g t b
a (P;vl)>=g S b

a (P;vl)
L2

6
(27)

for gravity.
The components of the averaged relative energy-momentum tensors have cor-

rect dimensions but they depend on a dimensional parameter L. How to choose the
dimensional parameter L?

In [7] we have proposed a universal choice of the parameter L. Namely, we have

proposed L = 100LP ≈ 10−33m. Here LP :=
√

h̄G
c3 ≈ 10−35m is the Planck length.

Such choice of L gives the averaged gravitational relative energy-momentum ten-
sors components which are negligible in comparison with the components of the
energy-momentum tensor for matter. Consequently, with such choice of the param-
eter L, these tensors play no role in evolution of the material objects and in evolution
of the Universe. On the other hand, the choices can be made such that L = 2GM

c2 for
a closed system with mass M, L = λ for a gravitational wave of wave length λ , and
L = 2GMU

c2 = c
H0

= ct0 in cosmology, which lead us to the averaged relative energy
densities of the same order as ordinary energy density of matter. Here MU , H0, t0
mean mass of the observed part of the Universe, actual value of the Hubble constant
and an approximate age of the Universe respectively.

Of course, there exist other possibilities of choosing the length parameter L.
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3 Conclusion

On the superenergy level, or on the averaged relative energy-momentum level, there
seems to be no problem with a suitable expression for gravity. However, canoni-
cal superenergy tensors seem more fundamental than the corresponding averaged
relative energy-momentum tensors because they do not depend on the choice of L.
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