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Abstract There is a chance that the spacetime around massive compact objects
which are expected to be black holes is not described by the Kerr metric, but by a
metric which can be considered as a perturbation of the Kerr metric. These non-Kerr
spacetimes are also known as bumpy black hole spacetimes. We expect that, if some
kind of a bumpy black hole exists, the spacetime around it should possess some
features which will make the divergence from a Kerr spacetime detectable. One of
the differences is that these non-Kerr spacetimes do not posses all the symmetries
needed to make them integrable. We discuss how we can take advantage of this fact
by examining EMRIs into the Manko-Novikov spacetime.

1 Introduction

We expect that a star which at the end of its life becomes a compact object with
mass greater than three solar masses is a Kerr black hole. However, this anticipation
should be somehow tested by observations.

One way to test the Kerr hypothesis is to study the gravitational wave signal pro-
duced by an inspiraling relatively light compact object (e.g., stellar) into the space-
time background of a supermassive compact object. This kind of motion is called
Extreme Mass Ratio Inspiral (EMRI). Such binary systems should exist in the cen-
ter of galaxies which we believe are occupied by supermassive black holes (105
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to 109 solar masses). In EMRIs the lighter object basically traces the background
spacetime by following approximately geodesic orbits. Ryan in [1, 2] showed that
we could extract the multipole moments of the background from the gravitational
wave signal, and Collins and Hughes [3] produced a perturbed Schwarzschild black
hole spacetime, which they called a “bumpy” black hole spacetime, in order to pro-
vide the first tests of the Kerr hypothesis. Since then several such tests have been
proposed, see e.g., [4, 5, 6] and references therein.

The bumpy black hole spacetimes are axisymmetric and stationary, but in gen-
eral lack a Carter-like constant [7]. It has been shown that even in an axisymmetric
stationary Newtonian potential a higher order Killing tensor giving a Carter-like
constant cannot be found [8], contrary to conjectures that were initially postulated
[9]. The lack of a Carter-like constant implies that the bumpy black hole systems
are non-integrable, which in turn suggests that non-linear effects like chaos should
be present. In a series of publications [10, 11, 12] we have studied what implica-
tions these non-linear effects will bring to a gravitational wave signal coming from
an EMRI into a non-Kerr spacetime background. In the present article we present
briefly these findings.

The article is organized as follows. Section 2 introduces some basic theoreti-
cal elements about a bumpy black hole spacetime and the geodesic motion in such
spacetime. Section 3 discusses the non-integrability imprints of the non-Kerr back-
ground in gravitational wave signals. Our conclusions are given in section 4.

2 Theoretical elements

2.1 The Manko-Novikov spacetime

The bumpy black hole spacetime we used in [10, 11, 12] is a spacetime which
belongs to the so-called Manko-Novikov (MN) metric family [13]. Manko and
Novikov found an exact vacuum solution of Einstein’s equations which describes
a stationary, axisymmetric, and asymptotically flat spacetime with arbitrary mass-
multipole moments [13]. The MN metric subclass we used was introduced in [14]
and deviates from the Kerr at all moments higher or equal to the quadrupole one.
The new spacetime is characterized by one more parameter q than the the ones
describing a Kerr metric. Namely, the quantity q measures how much the MN
quadrupole moment Q departs from the Kerr quadrupole moment QKerr = −S2/M
(that is q = (QKerr −Q)/M3), where M and S are the mass and the spin of a Kerr
black hole respectively. The line element of the MN metric in the Weyl-Papapetrou
cylindrical coordinates (t,ρ,φ,z) is

ds2 =− f (dt −ωdφ)2 + f−1[e2γ(dρ2 +dz2)+ρ2dφ2], (1)

where f , ω, γ are considered functions of the prolate spheroidal coordinates v,w,
while the coordinates ρ,z can be expressed as functions of v,w as well. Namely,
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ρ = k
√
(v2 −1)(1−w2), z = kvw, where k = M 1−α2

1+α2 , α =
−1+

√
1−χ2

χ , while χ is
the dimensionless spin parameter χ = S/M2. The exact formulae of f , ω, γ are
lengthy, and can be found in [14, 11].

2.2 Geodesic motion in the Manko-Novikov spacetime

The geodesic orbits of a test particle of mass µ are described as equations of motion
of the Lagrangian L = 1

2 µ gµν ẋµ ẋν , where the dots denote derivatives with respect
to the proper time. The MN metric has two integrals of motion, namely the energy
(per unit mass)

E =−∂L
∂ ṫ

/µ = f (ṫ −ω φ̇), (2)

and the z-component of the angular momentum (per unit mass)

Lz =
∂L
∂ φ̇

/µ = f ω(ṫ −ω φ̇)+ f−1ρ2φ̇, (3)

The Kerr metric has one more integral of motion, the so-called Carter constant [7],
thus it is an integrable system. However, the MN model lacks in general such con-
stant (for q = 0 the MN metric is simply a Kerr metric), which means that MN is a
non-integrable system, and therefore chaos should appear.

We can reduce the four degrees of freedom of the MN system to two, by the two
integrals of motion E, and Lz, and thus, restrict the motion to the meridian plane
(ρ, z). By rewriting the metric (1) we see that the motion in the meridian plane
satisfies the relation

1
2
(ρ̇2 + ż2)+Ve f f (ρ,z) = 0, (4)

where the effective potential Ve f f (ρ,z) depends also on q, χ , E, and Lz. Ve f f ≤ 0
for the orbits which do not escape to infinity. In the limit Ve f f = 0 eq. (4) gives
ρ̇ = ż = 0; therefore, this limit determines the curve of zero velocity (CZV). Inside
the CZV lie the non-escaping orbits.

In the Kerr spacetime case (q = 0) every non-plunging geodesic orbit confined
by the CZV lies on a two dimensional torus in the phase space. On such a torus
each orbit is described by two characteristic frequencies ω1, ω2. If the ratio of these
frequencies νθ is an irrational number, the motion is quasiperiodic, and the corre-
sponding torus is covered densely by the orbit. If the ratio is a rational number, the
motion is periodic, and the corresponding torus is called resonant. A resonant torus
is covered by an infinite number of periodic orbits, all having the same frequency
ratio νθ .

By setting q ̸= 0 we perturb the integrable system (Kerr), and the transition to
the non-integrable system (MN) is described basically by two theorems: the KAM
theorem, and the Poincaré-Birkhoff theorem. The first theorem states that after the
perturbation most of the non-resonant tori will survive deformed. These surviving
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tori are called KAM tori. The second theorem implies that from a resonant torus
only a finite even number of periodic orbits will survive; half of them will be stable
and the other half unstable. Around the stable orbits small islands of stability are
formed, while the asymptotic manifolds emanating from the unstable periodic orbits
fill a region of chaotic orbits. The above formation is known as a Birkhoff chain.

One way to study the aforementioned different structures in a non-integrable
system of two degrees of freedom is to take a section through the foliation of the
tori. Such section is known as a surface of section, or as a Poincaré section. Another
way is provided by the frequency ratio νθ , by which we can detect the different types
of orbits and it is known as the rotation number (e.g., [15]). If νθ corresponds to an
irrational number, we have a KAM curve; if it corresponds to a rational number, we
are on a Birkhoff chain of islands of stability; if the value of νθ is indefinite, and
does not correspond to a particular number, then the orbit is chaotic.

3 Non-integrability imprints on the gravitational wave signal

3.1 The plateau effect of the resonances

One possible imprint of the non-integrability of a bumpy black hole spacetime on
a gravitational wave signal is the effect of the resonances. The left panel of Fig.
1 shows a part of the surface of section z = 0 (z > 0) of a MN spacetime for the
parameter set E = 0.95, Lz= 3 M, χ = 0.9, q= 0.95. One’s first impression might be
that the surface of section indicates an integrable system, because no straightforward
signs of chaos are prominent. However, the islands of stability (left panel of Fig. 1)
implies the existence of Birkhoff chains, which in turn indicates that chaos is also
present.

If we take initial conditions along a straight line in the phase space, like the ρ̇ = 0
line starting from the center u0 of the main island of stability shown in the left panel
of Fig. 1, and evaluate the rotation number for each of these initial conditions, then
we get a rotation curve (right panel of Fig. 1). This curve seems to be smooth and
strictly monotonic (in a Kerr spacetime this is the case), however a more detailed
look reveals that this is not true. At the resonances, plateaus appear. For instance
in the embedded plot of the right panel of Fig. 1, we can see a plateau at the 2/3
resonance. This happens because all the orbits belonging to the same chain of islands
of stability share the same rotation number, i.e., the same frequency ratio. Such
plateaus do not appear in the case of a Kerr metric.

However, geodesic orbits are simply an approximation of real EMRI orbits. A
more realistic approximation demands the inclusion of the radiation reaction. Since
there are no reliable computations describing the radiation reaction in a bumpy black
hole spacetime, we used the same trick as the authors of [14]. Namely, we used the
hybrid approximative method [16] (eqs. (44), (45) in [16]), where we added by hand
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Fig. 1 The left panel shows a part of the surface of section in the plane (ρ, ρ̇) focusing on the
main island of stability, where u0 indicates the center of the main island. The right panel shows
the rotation number along the line ρ̇ = 0 (starting from u0 and moving leftwards) on the surface of
section shown in the left panel. Embedded in the right panel is a detail of the rotation curve around
the 2/3-resonance. The parameters used are E = 0.95, Lz = 3 M, χ = 0.9, q = 0.95.

the anomalous quadrupole moment q to the χ2 terms. Furthermore, we assumed a
constant rate of energy and angular momentum loss due to gravitational radiation.

We applied the aforementioned scheme for a mass ratio µ/M = 8×10−5, evolved
initial conditions near the 2/3 resonance, and found that the plateau also appears
when we calculate the rotation number as a function of the coordinate time (left
panel of Fig. 2). This phenomenon was tested for several initial conditions near the
2/3 resonance and for each of them we estimated the time ∆ tr that the inspiraling
non-geodesic orbit stayed in the resonance (right panel of Fig. 2). The mean time of
these plateaus is approximately 5×104M, which corresponds roughly to a week for
a supermassive compact object of the size of the one lying at the center of the Milky
Way.

3.2 The Beacon effect of stickiness

If we focus more on the chaotic aspect of the Birkhoff chains, another effect could
be detected in gravitational waves coming from an EMRI in a bumpy black hole
spacetime background. This effect is connected with the phenomenon of stickiness
[15]. The stickiness phenomenon concerns chaotic orbits which for various reasons
stick for a long time interval in a region close to regular orbits. Therefore, their
behavior in the frequency spectrum might resemble that of the regular orbits they
are close to, before they depart from that region.
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Fig. 2 The left panel shows the evolution of the ratio νθ as a function of the coordinate time t for
a non-geodesic orbit. The vertical dashed lines demarcate the time intervals that the non-geodesic
orbit spends in the interior of the 2/3-resonance. The right panel shows the time ∆ tr needed by
non-geodesic orbits to cross the chain of islands belonging to the 2/3-resonance as a function of
their initial conditions ρ(0) along the line ρ̇ = 0, z = 0. The parameters used are µ/M = 8×10−5,
q = 0.95, χ = 0.9, E(0) = 0.95, Lz(0) = 3 M, where E(0), Lz(0) are the initial values of E and Lz
respectively.

In the left panel of Fig. 3 we see a detail of the surface of section near the res-
onance 2/7. The stickiness appears in the region where chaotic orbits (scattered
points on the surface of section) are confined by regular orbits. Even though their
true character is detected by the rotation number, because νθ varies in the corre-
sponding regions (right panel of Fig. 3), in the frequency spectrum the phenomenol-
ogy might be more complicated. Namely, while a chaotic orbit stays near a regular
orbit we might get a signal, i.e., distinct characteristic frequencies; when the orbit
moves to a more prominent chaotic layer the frequency peaks in the signal will dis-
solve leaving only noise instead of a signal; later on when the orbit returns near a
regular orbit the signal shall reappear, and so on. This effect resembles a beacon,
where the signal appears and disappears.

4 Conclusions

The resonance and the stickiness effect are generic characteristics of the geodesic
motion in any non-integrable Hamiltonian system describing a stationary and axi-
symmetric spacetime background which is an axially symmetric perturbation of the
Kerr spacetime. Therefore, they should be in principle detectable in a gravitational
wave signal coming from an EMRI into a non-Kerr metric.
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Fig. 3 The left panel shows a detail of the surface of section near an island 2/7. The right panel
shows the rotation curve along the ρ̇ = 0 line of the surface of section presented in the left panel.
Embedded in the right panel is the irregular variation of the rotation number just outside the left side
of the 2/7-plateau. This irregular behavior is due to the chaotic layer surrounding the corresponding
island. The parameters used are E = 0.95, Lz = 2.995 M, χ = 0.9, q = 0.95.
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