
Some links between general relativity and other
parts of physics

Gary W. Gibbons

Abstract Now that General Relativity has become such a central part of modern
physics, its geometrical formalism being taught as part of almost all undergraduate
physics courses, it is natural to ask: how can its basic concepts and techniques be
used to illuminate areas of physics which have no connection with gravity? Another
way of asking this question is: are the analogues situations to those occurring in
General Relativity? The search for such analogues is of course an old one, but re-
cently, because of advances in technology, these questions have become more topi-
cal. In this talk I will illustrate this theme by examples drawn from optics, acoustics,
liquid crystals, graphene and the currently popular topic of cloaking.

1 Introduction

General Relativity, its mathematical techniques and conceptual framework are by
now part of the tool-kit of (almost) all theoretical physicists and at least some pure
mathematicians. They have become part of the natural language of physics. Indeed,
parts of the subject are passing into mathematics departments. It is natural therefore
to ask to what extent can they illuminate other (non-relativistic) areas of physics.
It is also the case that the relentless onward progress of technology makes possible
analogue experiments illustrating basic ideas in General Relativity. In this talk I will
illustrate this ongoing process of unification.
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1.1 Dynamical Casimir effect

As a topical example of the relentless progress of technology November last year
saw the demonstration in the laboratory [1] some 40 years after the original predic-
tion [2, 3] of a very basic mechanism in semi-classical General Relativity: ampli-
fication of vacuum fluctuations in a time-dependent environment. This is the basis
of all we believe about inflationary perturbations, Hawking evaporation, Black Hole
information “Paradox?” and much of AdS/CFT correspondence etc.

1.2 Some previous work

The idea of finding analogue models for general relativistic effects is not new, but
the pace has quickened of late. Some important early work was done on cosmic
strings modelled by vortices in superfluid helium 4 and by Volovik [4], who noted
that the order parameter of some phases of superfluid helium 3 is a triad ei such that
ei · e j = δi j. More recently, the emphasis has shifted to the optics of metamaterials
and most recently to graphene. There are also interesting analogies in liquid crystals.

2 Shallow water waves

Let’s start with a very simple example which will illustrate some basic ideas. If η =
η(t,x,y) is the height of the water above its level when no waves are present and h=
h(x,y) the depth of the water, then shallow water waves satisfy the non-dispersive
wave equation: (this is the analogue of the Einstein Equivalence Principle)

(aghηx)x +(aghηy)y = ηtt ,

where ag is the acceleration due to gravity. From now on we adopt units in which
ag = 1. The wave operator coincides with the covariant d’Alembertian

1√
−g

∂µ(
√
−ggµν ∂ν η) = 0 ,

with respect to the 2+1 dimensional spacetime metric

ds2 =−h2dt2 +h(dx2 +dy2) .

Applying ray theory and geometrical optics, one writes

η = Ae−iω(t−W (x,y)) ,
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where A(x,y) is slowly varying. To lowest order W satisfies the Hamilton-Jacobi
equation (

∂W
∂x

)2

+

(
∂W
∂y

)2

=
1
h
,

and the rays are solutions of
dx
dt

= h
∂W
∂x

.

Given any static spacetime metric

ds2 =−V 2 dt2 +gi j dxidx j ,

the projection xi = xi(t) of light rays, that is characteristic curves of the covariant
wave equation or the Maxwell or the Dirac equations, onto the spatial sections are
geodesics of the Fermat or optical metric given by

ds2
o =

gi j

V 2 dxidx j .

In the special case of shallow water waves, the rays are easily seen to be geodesics
of the metric

ds2
o =

dx2 +dy2

h
.

For a linearly shelving beach,

h ∝ y y > 0 ,

the rays are cycloids, and all ray’s strike the shore, i.e. y = 0, orthogonally. For a
quadratically shelving beach,

h ∝ y2 y > 0 ,

the rays are circles centred on the shore at y = 0, and again every ray intersects the
shore at right angle. In fact the optical metric in this case is

ds2
o =

dx2 +dy2

y2 ,

which is Poincaré’s metric of constant curvature on the upper half plane. If x is
periodically identified, one obtains the the metric induced on a tractrix of revolution
in E3, sometimes called the Beltrami trumpet (i.e. H2/Z).

For an embedded surface of revolution the induced metric is

hi j dxidx j = dρ2 +C2(ρ)dϕ 2 , 0 ≤ ϕ < 2π ,

C2(ρ) = x2 + y2 = R2 , dρ2 = dR2 +dz2 ,

with Gauss curvature K =−C′′
C .
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For Beltrami’s trumpet we have ρ ≥ 0 and thus

C(ρ) = aexp
(
−ρ

a

)
, K =− 1

a2 ,

and if we denote
w = aϕ + iaexp

(ρ
a

)
,

then the metric is

hi j dxidx j =
a2|dw|2

(ℑw)2 .

Note that (dz/dρ)2 > 0 ⇒ the embedding can never reach the conformal boundary
at y = 0. This will be significant later.

The optical time for rays to reach the shore in the second example above is in-
finite. This reminds one of the behaviour of event horizons. In fact there is a rather
precise correspondence. The Droste-Schwarzschild metric in isotropic coordinates
(setting G = 1 = c) is

ds2 =−
(
1− m

2r

)2(
1+ m

2r

)2 dt2 +
(

1+
m
2r

)4
(dx2 +dy2 +dz2) ,

with r =
√

x2 + y2 + z2. The isotropic radial coordinate r is related to the Schwarz-
schild radial coordinate R by

R = r
(

1+
m
2r

)2
.

The event horizon is at R = 2m, r = m
2 If we restrict the Schwarzschild metric to the

equatorial plane z = 0 we obtain

ds2 =−
(
1− m

2r

)2(
1+ m

2r

)2 dt2 +
(

1+
m
2r

)4
(dx2 +dy2) .

The optical metric is

ds2
o =

(1+ m
2r )

6

(1− m
2r )

2 (dx2 +dy2) .

and

h =
(r− m

2 )
2

(r+ m
2 )

6 r4 .

We get the analogue of a black hole: a circularly symmetric island whose edge is at
r = m

2 and away from which the beach shelves initially in a quadratic fashion and
ultimately levels out as r → ∞. Since
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1
h

dh
dr

=
2

r− m
2
+

4
r
− 6

r+ m
2
> 0 ,

the beach shelves monotonically.
To obtain a cosmic strings for which the optical metric is a flat cone with deficit

angle δ = 2π p
p+1 one needs a submerged mountain with

h ∝ (x2 + y2)
p

p+1 ,

As p → ∞, we get a parabola of revolution and the optical metric approaches that
of an infinitely long cylinder. If p = 1 the mountain is conical, like a submerged
volcano. In physical coordinates x, y, the rays are bent, but one may introduce coor-
dinates in which they are flat:

ds2 = dr̃2 + r̃2 dϕ̃ 2 , 0 ≤ ϕ̃ ≤ 2π
p+1

.

In these coordinates the rays are straight lines. One could multiply these exam-
ples to cover such things as cosmic strings, moving water and vortices. To take into
account the fact that the Earth is round we replace E2 by S2

dx2 +dy2 → dθ 2 + sin2 θ dϕ 2 ,

which gives Einstein’s static universe in 2+1 dimensions. To take into account that
it is rotating, we replace the static, i.e. time-reversal invariant metric, by a stationary
metric

dθ 2 + sin2 θ dϕ 2 → dθ 2 + sin2 θ (dϕ −Ω dt)2 .

3 Optics and Maxwell’s equations

Maxwell’s source-free equations in a medium are

curlE =−∂B
∂ t

, divB = 0 ,

curlH =+
∂D
∂ t

, divD = 0 ,

or if (εi jk =±1,0)

F = −Ei dt ∧dxi +
1
2

εi jkBi dx j ∧dxk ,

G = Hi dt ∧dxi +
1
2

εi jkDi dx j ∧dxk ,



6 Gary W. Gibbons

dF = 0 = dG .

In what follows it will be important to realise that these equations hold in any
coordinate system and they do not require the introduction of a spacetime metric.

However to “close the system”, one must relate F to G by means of a “constitu-
tive equation”. If the medium is assumed to be static and linear, then

Di = εi jE j , Bi = µi jH j ,

where εi j is the dielectric permittivity tensor and µi j the magnetic permeability ten-
sor. If they are assumed symmetric: εi j = ε ji, µi j = µ ji, then E = 1

2

(
EiDi +HiBi

)
may be regarded as the energy density and S=E×H the energy current or Poynting
vector since Maxwell’s equations imply

divS+
∂E

∂ t
= 0 .

“In olden days a glimpse of stocking was thought of as something shocking” and
certainly µi j and εi j were assume positive definite “but now”, with the advent of
nanotechnology and the construction of metamaterials “anything goes”.

3.1 Left-handed light

As long ago as 1964, V.G. Vestilago pointed out that isotropic substances with with
µi j = µδi j, εi j = εδi j and for which

µ < 0 , ε < 0 ,

give rise to left-handed light moving in a medium with a negative refractive index. In
2001, R.A. Shelby, D.R. Smith and S. Schutz [5] produced this effect for microwave
frequencies. In 2002, D.R. Smith, D. Schurig and J.B. Pendry [6] appeared to have
produced this effect in the laboratory.

Assuming a spacetime dependence proportional to an arbitrary function of k ·x−
ωt, with ω > 0, one finds

k×E = ω B , k×H = −ω D ,

k×E = µω H , k×H =−ε ω E .

It is always the case that (E,H,S) form a right-handed orthogonal triad but if both
µ and ε are negative then (E,H,k) form a left-handed orthogonal triad and so S and
k are anti-parallel rather than parallel as is usually the case. Since the wave vector k
must be continuous across a junction between a conventional medium and an exotic
medium with µ < 0, ε < 0, this gives rise to backward bending light.

The speed of propagation v = 1
n , where n is the refractive index, is given by
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v2 =
ω2

k2 =
1

µε
;

it is natural to take the negative square root to get the refractive index

n =− 1
√µε

.

Given a spacetime metric gµν one has a natural way of specifying a constitutive
relation:

G = ⋆gF ,

where ⋆g denotes the Hodge dual with respect to the spacetime metric g such that
⋆g⋆g =−1. If

ds2 =−V 2(xk)dt2 +gi j(xk)dxidx j ,

Tamm [7], Skrotskii, [8] and Plebanski [9] showed that

µi j = εi j =

√
detglm

V 2 gi j .

A medium with µi j = εi j is said to be impedance matched. A similar result holds
for resistivity problems such as that Calderon [10] encountered oil prospecting

∇∇∇ · j = 0 , E =−∇∇∇ϕ , ji = σi jE j ,

∂i (σi j ∂ jϕ) = 0 ⇒ ∇2
g ϕ =

1
√

g
ϕi
(√

ggi j∂ jϕ
)
= 0 ,

with
σi j =

√
ggi j , gi j = (detσi j)ρi j .

If
σi j =

1
z

δi j ,

we get Poincaré metric on upper half space model of hyperbolic or Lobachevsky
space H2

ds2 =
dx2 +dy2 +dz2

z2 .

The conformal boundary is a perfect conductor.
In physics we may choose either the West Coast signature convention (−,+,+,+),

so that gtt < 0 and gi j is positive definite or the East Coast convention (+,−,−,−)
for which gtt > 0 and gi j is negative definite. By Sylvester’s law of inertia the signa-
ture is locally constant, however running between the East Coast and the West coast
there must be a curve on which the spacetime signature flips (as originally sug-
gested in a different context by Arthur Eddington in 1922). Clearly, light passing
from Coast to Coast will get bent back.
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By Fermat’s principle electromagnetic waves move along geodesics of the opti-
cal metric

ds2
o =V−2gi j dxidx j ,

but this is invariant under signature change.

3.2 Zermelo-Randers-Finsler geometry

If time reversal symmetry is broken a stationary metric may be cast in three different
forms [11]:

ds2 = −U(dt +ωidxi)2 + γi jdxidx j

= U
[
−(dt −bidxi)2 +ai jdxidx j]

=
U

1−hi jW iW j

[
−dt2 +hi j(dxi −W idt)(dx j −W jdt)

]
.

Fermat’s principle for light rays now generalises to Zermelo’s problem: minimize
the travel time of a boat moving with fixed speed with respect to a Riemannian
metric hi j in the presence of a “wind” W i.

One may also think of the problem as one of a particular type of Finsler geometry
considered first by Randers with a Finsler function of homogeneous degree one in
velocity vi = dxi

dλ defining a line element ds = Fdλ , given by

F =
√

ai jviv j +bivi .

Alternatively, one may think of a charged particle of unit mass and unit charge,
moving on a Riemannian manifold with metric ai j and magnetic field Bi j = ∂ib j −
∂ib j. In General Relativity, this is gravito-magnetism verified recently by the GP-B
satellite experiment.

In the absence of time reversal symmetry there is a magneto-electric effect first
predicted by L. Landau and E.M. Lifshitz in 1956 and exhibited for instance by
Cr2O3:

Bi = µi jH j +α jiE j , Di = εi jE j +αi jH j ,

E =
1
2

µi jHiH j +αEiH j +
1
2

εi jEiE j .

If we take as constitutive relation G = ⋆gF , then µi j,εi j and αi j may be read off
from the spacetime metric.

In a moving medium, a typical sound or light wave satisfies[
(∂t −W i∂i)

2 −hi j ∂i∂ j
]
u = 0 .
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The rays solve the Zermelo problem with wind W i. For sound waves this is known to
explain the curious (and irritating) propagation of traffic noise. The rays behave like
charged magnetic particles, the magnetic field being given by the vertical gradient
of the horizontal wind. Of course a vertical gradient in temperature and hence re-
fractive index will also provide an anti-mirage effect. This produces a curved metric
hi j. Claude Warnick and I have recently modelled this by a charged particle moving
in a magnetic field on the upper half plane [12].

For black or white holes Zermelo picture is equivalent to the use of Painlevé-
Gullstrand coordinates. Here is a low-tech example involving just a kitchen sink
[13]. The ripples are surface tension ripples.

Fig. 1 Here is the Mach cone.

3.3 Invisibility cloaks

Designing invisibility cloaks, analogue black holes, etc. using metamaterials and
transformation optics. The basic idea is to start with a metric and read off εi j and µi j.
The metric could even be flat and obtained by a local diffeomorphism from the flat
metric by which a beam or pencil of parallel straight lines in Cartesian coordinates
are taken to the desired set of light rays in an impedance matched metamaterial
medium. This technique has been much exploited by Pendry, Leonhardt and their
collaborators and followers recently.

As pointed out by Uhlmann and others, similar problems arise in Calderon’s
inverse problem: given a measurement of E and ϕ on the boundary of some domain,
can you determine uniquely the conductivity in the interior or can a reservoir of oil
be invisible to the prospector?

In general one needs anisotropic materials.
To obtain an isotropic metamaterial medium the local diffeomorphisms should

be conformal. The oldest and best known example of this is Maxwell’s fish eye lens
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which makes use use of Hipparchus’s stereographic projection. This is the basis of
the Luneburg lens [14].

A variant due to Minano [15] pulls back the round metric on S2(θ ,ϕ) to R2(x,y)
using

x =
(

1− sinθ
cosθ

) 1
p

cos
(

ϕ
p

)
, y =

(
1− sinθ

cosθ

) 1
p

sin
(

ϕ
p

)
,

to get

ds2
o = dθ 2 + cos2 θ dϕ 2 = n2(dx2 +dy2) , n = 2p2 rp−1

r2p +1
.

To get a black hole start again with the Droste-Schwarzschild metric in isotropic
coordinates

ds2 = −
(
1− m

2r

)2(
1+ m

2r

)2 dt2 +
(

1+
m
2r

)4 (
dx2 +dy2 +dz2) ,

n = µ = ε =
(

1+
m
2r

)3(
1− m

2r

)−1
.

The original cloak construction by Uhlmann works like this. We consider a
spherical shell or solid annulus a < r < 2a in r,θ ,ϕ space and map it onto the
punctured disc 0 < r̃ < 2a by

r̃ = 2(r−a) , θ̃ = θ , ϕ̃ = ϕ .

The map is the identity: r = r̃ for r > 2a, r̃ > 2a. Now pull back the flat metric
dr̃2 + r̃2(dθ̃ 2 + sin2 θ̃ dϕ̃ 2) and straight lines in r̃, θ̃ , ϕ̃ space:

ds2 = 4dr2 +4(r−a)2(dθ 2 + sin2 θ dϕ 2) ,

ε = µ = diag
(

2(r−a)2 sinθ , 2sinθ ,
2

sinθ

)
.

No light ray (or electric current) enters the solid ball r < a.
The construction just given is strikingly similar to that used in the hole argument

which played a big part in Einstein’s understanding of the concept of general co-
variance and his search for covariant field equations in the years from 1913 to 1915
[16].

It is remarkable that what hitherto has been of interest almost exclusively to
philosophers and historians of science is now at the centre of a new technology!
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3.4 Hyperbolic metamaterials and two-time physics

Another possibly are hyperbolic metamaterials for which εi j is an indefinite matrix.
The dispersion relation for a bi-refringent medium with µi j = δi j is a quartic cone
of two sheets: (

k2
x

n2
o
+

k2
y

n2
o
+

k2
z

n2
o
− ω2

c2

)(
k2

x

n2
e
+

k2
y

n2
e
+

k2
z

n2
o
− ω2

c2

)
= 0

with n2
o = εz ,n2

e = εx = εy. Exceptional electromagnetic waves in a uniaxial medium
thus obey

1
c2

∂ 2E
∂ t2 =

1
ε1

∂ 2E
∂ z2 +

1
ε2

(
∂ 2E
∂x2 +

∂ 2E
∂y2

)
.

The idea is [17] that dipole-moments in some crystals such as α quartz interact
with lattice vibrations to form phonon-polariton modes called restrahlen bands in
the mid infra-red region for which both ε1 and ε2 can become negative. Moreover
because of crystal anisotropy ε1 and ε2 change sign at slightly different tempera-
tures. This would allow an effective two-time physics.

In a model in a layered composite dielectric material

ε2 = nm +(1−nm)εd , ε1 =
εmεd

(1−nm)εm +nmεd
,

where the subscripts d and m stand for dielectric and metal respectively and εm is
frequency dependent and can be negative. nm is the volume fraction of metal. In a
simple Drude model

εm = 1−
ω2

p

ω2 + iωγ
,

with γ
ωp

being small. If nm ≪ 1 we have

ε2 ≈ εd −
nmω2

p

ω2 + iωγ
, ε1 ≈ εd .

4 Chiral nematics

Rather than consider artificial impedance matched or hyperbolic metamaterials, we
may consider realistic substances such as chiral nematics in their helical phase. Up
to a divergence the Frank-Oseen free energy is

F =
1
2

∫ (
|∇qn|2 −λ (n ·n−1)

)
d3x ,
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∇q
i n j = ∂ jn j +qεi jk nk ,

where ∇q is a Euclidean metric preserving connection with torsion. The free energy
density would vanish if n were covariantly constant with respect to ∇q, i.e. ∇q

i n j = 0.
But rather like an anti-ferromagnet it is frustrated since

(∇q
i ∇q

j −∇q
j∇

q
i )nk ̸= 0 .

The substance may adopt a compromise configuration called the helical phase
which satisfies the second order equations but not the first order Bogomolnyi type
equation

n = (cos(pz), sin(pz), 0) .

Optics in a nematic liquid crystal is governed by Fermat’s principle using the Joets-
Ribotta metric

ds2
o = n2

e dx2 +(n2
o −n2

e)(n ·dx)2 ,

where no is the refractive index of the ordinary ray and ne that of the extra-ordinary
ray.

Introducing 3 one-forms with Maurer-Cartan relations

λ 1 = cos(pz)dx+ sin(pz)dy , dλ 1 = λ 3 ∧λ 2 ,

λ 2 = cos(pz)dx− sin(pz)dy , dλ 2 = λ 3 ∧λ 1 ,

λ 3 = pdz , dλ 3 = 0 ,

we find the Joets-Ribotta metric to be

ds2
o = n2

o(λ 1)2 +n2
e(λ 2)2 +

n2
e

p2 (λ
3)2 .

This is a left-invariant metric on Ẽ(2), the universal cover of the two-dimensional
Euclidean group E(2) whose Lie algebra e(2) is of Type V II0 in Bianchi’s classifi-
cation.

Thus the helical phase of chiral nematic crystals gives rise to a static Bianchi
V II0 cosmology:

ds2 =−dt2 +n2
o(λ 1)2 +n2

e(λ 2)2 +
n2

e

p2 (λ
3)2 ,

and one may, and we did, use all the standard tools of general relativistic cosmology
to describe its optical and electromagnetic properties, including solving Maxwell’s
equations, applying the Floquet-Bloch theorem and the associated Mathieu-Hill
equation.
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5 Gravitational kinks

The topology of a Lorentzian metric may be (partially) captured by a direction field
ni. Given a Riemannian metric gR

i j, and a unit direction field ni such that gR
i j nin j = 1

we may construct a Lorentzian metric gL
i j via

gL
i j = gR

i j −
1

sin2 α
nin j , gi j

L = gi j
R − 1

cos2 α
nini , ni = gR

i jn
j .

Conversely, given gL
i j and gR

i j we may reconstruct ni up to a sign. Fixing the sign
amounts to fixing a time orientation. In what follows we will choose gR

i j to be the
usual flat Euclidean metric:

ds2
L = gi j

L dxidx j = dx2 − 1
cos2 α

(n ·dx)2 .

Given a closed surface enclosing a domain D, Finkelstein and Misner quanti-
fied the notion of tumbling light cones – the light cone tips over on Σ = ∂D –
by introducing a kink number which counts how many times the light cone tips
over on Σ . The outward unit normal ννν gives a 2-dimensional cross section of the
four-dimensional bundle S(Σ) of unit 3-vectors over Σ . In the orientable case, the
director field gives another 2-dimensional cross section of S(Σ). The kink number,
kink(Σ ,gL), is number of intersections of these two sections with attention paid
to signs. In the non-orientable case, one considers the bundle of directions. If the
Lorentzian metric is non-singular, we have

χ(D) = kink(∂D,gL) .

For planar domains kink(∂D,gL) is the obvious winding number.
Disclination line is defined by

n = (cos(sϕ), sin(sϕ), 0) , ϕ = arctan
(y

x

)
,

where s ∈ Z ∪ Z+ 1
2 . If s is half integral, then we just have a direction field, not a

vector field.
n ·dx = cos((s−1)ϕ)dr+ sin((s−1)ϕ)r dϕ .

For α = π
2 we get

ds2
L = gL

i jdxidx j =−cos(2(s−1)ϕ)
(
dr2 − r2 dϕ 2)

)
−2sin(2(s−1)ϕ)r drdϕ .

Moving around a circle r = constant, the radial coordinate is timelike and the an-
gular coordinate spacelike or vice versa depending upon the sign of cos(2(s−1)ϕ)
(tumbling light cones). The metric components gL

i j are finite and detgL
i j = −r2 ⇒

metric non-singular if r > 0.
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5.1 Bloch walls

If parity symmetry holds then a typical free energy functional takes the form

F [M] =
1
2

∫
dx(αi j∂iM ·∂ jM+βi jMiM j) .

In the uniaxial case with the easy direction along the third direction αi j = diag(α1, α1, α2),
βi j = diag(β , β , 0). For a domain wall separating a region x ≪ −1 and with M
pointing along the positive 3rd direction, from the region x ≫ +1 where it points
along the negative 3rd direction, we have

M = M (0, sinθ(x), cosθ(x)) , M = constant ,

and finds that θ must satisfy the quadrantal pendulum equation, l =
√

α1
β ,

θ 2 − 1
l2 sin2 θ = constant′ .

If we impose the boundary condition that θ → 0 as x →−∞ and θ → π as x →
+∞, then constant′ = 0 and

cosθ =− tanh
(x

l

)
.

The Lorentzian metric (if α = π
2 ) is

ds2 = gL
i j dxidx j = dx2 + cos(2θ)

(
dy2 −dz2)−2sin2θ dzdy .

This closely resembles our previous examples and clearly exhibits the phenomenon
of tumbling light cones. We note, en passant, that in principle the tensor αi j could
itself vary with position. If so, we might interpret it in terms of an effective metric
gi j with inverse gi j and g = detgi j obeying

αi j =
√

ggi j .

5.2 Liquid crystal droplets

The normal νi = ∂iS to the surface S = constant of a droplet of anisotropic nematic
phase inside a domain D with unit outward normal ννν surrounded by an isotropic
phase satisfies the constant angle condition

n ·ννν = cosα = constant .

That is
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ννν ·ννν − 1
cos2 α

(ννν ·n)(ννν ·n) = 0 = gi j
L νiν j = gi j

L ∂iS∂ jS .

The surface ∂D of the droplet ∂D is a null-hypersurface or wave surface (a solution
of the zero-rest-mass Hamilton-Jacobi equation)

Taking the z-coordinate as time so time runs vertically upwards and making the
ansatz

S =
z

sinα
+W (x,y) , ∇W ·∇W = 1 .

Simple solutions of this Eikonal equation are given by sandpiles with π
2 −α the

angle of repose.
These describe Bitter domains in a ferromagnetic film with n = M

|M| with normal
ννν and boundary condition M ·ννν = 0.

∇∇∇ ·M = 0 , |M|= constant.

∇∇∇ ·n = 0 ⇒ nx = ∂yψ , ny =−∂xψ |∇ψ|= 1 .

The axisymmetric solution is the spiral wave surface swept out by the involute of
a circle, a helical developable:

S =± z
sinα

±a

(√
r2

a2 −1− arctan

(√
r2

a2 −1

))
±aϕ .

5.3 Helical phase

We make the ansatz
S = F(z)+ xcosθ + ysinθ ,

where F(z) solves the quadrantal pendulum equation

cos2(θ − pz)− cos2 α =

(
cosα

dF
dz

)2

.

Thus
F =

1
cosα

∫
dz
√

cos2(θ − pz)− cos2 α .

The surface is ruled by horizontal straight lines making a constant angle θ with the
x-axis and is bounded by |pz− (θ + nπ)| < α , n ∈ Z. In other words it is horizon-
tal cylinder or tube. The angle that the director n makes with the fixed direction
(cosθ , sinθ , 0) cannot be less than α .
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6 Graphene

The hexagonal Graphene “lattice” in x-space has a hexagonal Brillouin zone in the
dual p-space and is the sum of two triangular (true) lattices, A and B in x-space.
Each lattice has a Fermi surface in p-space and these two Fermi surfaces, govern-
ing the conduction and valence bands, touch in two conical Dirac points inside a
Brillouin zone. Thus the dispersion relation for small p is

E =±|p| .

Low energy excitations are governed by

EΨ = σσσ ·pΨ ,

where the two-component Ψ has two pseudo-spin states.
But this is the massless Dirac equation! (cf. [18])
On a curved graphene sheet it becomes the Dirac equation on a curved surface

Σ ⊂ E3 in Euclidean 3-space with metric

ds2 =−dt2 +hi j dxidx j , i, j = 1,2,

where hi j is the induced metric.
Since the massless Dirac equation is conformally invariant we may think of this

metric on R×Σ as the optical metric of a static metric with gtt ̸= constant.
If Σ is a Beltrami trumpet with metric of constant negative curvature, we have

the optical metric of identified Rindler spacetime. This is also near horizon optical
geometry of a general 2-dimensional black hole. Unfortunately we cannot find an
isometric embedding of H2/Z into E3 all the way down to y = 0, the horizon.

This is a general problem: a global theorem of Hilbert forbids isometric embed-
dings of complete surface of constant negative curvature into Euclidean space E3.

More generally we may consider a BTZ black hole [19]:

ds2
BT Z = −∆ dt2 +

dr2

∆
+ r2

(
dϕ − J

2r2 dt
)2

,

∆(r) =
r2

l2 −M+
J2

4r2 .

Zermelo metric:

hi j dxidx j =
dr2

∆ 2 +
r2

∆
dϕ 2 ,

Wind
W i∂i =

J
2r2 ∂ϕ .

In the near horizon limit hi j is of Beltrami trumpet form.
The massless Dirac equation in the Zermelo frame is
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γ1
(

∂ρ +
1
2

C′

C

)
+ γ2 1

C
∂ϕ + γ0(∂t +W∂ϕ )+

1
4

γ0γ1γ2CW ′
]

Ψ = 0 ,

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 . γ0γ1γ2 = 1 .

and we get a position dependent “mass-like” term and a connection term. If Ψ ∝
e−iωt+imϕ we have that

−ieA0 = imW , ⇒ eA0 =−mW .

A stationary Zermelo metric induces in the Dirac equation an effective, position
dependent radial electric field.

We could have done this calculation in the Randers frame. The detailed form of
the Randers metric is considerably more complicated. The embedding is qualita-
tively similar, but different.

More interestingly, because now the roles of t and ϕ have essentially been inter-
changed, we now find that there is an effective magnetic vector potential in the Dirac
equation. Therefore, the magnetic vector potential in the Randers frame appears as
an electric potential in the Zermelo one.

Since the Zermelo and Randers frames are in relative motion, this is just a man-
ifestation of the fact that under boosts magnetic and electric fields transform into
themselves. In either case, these effects could be mimicked by applying external
electric (Zermelo) or magnetic (Randers) fields to the two different graphene sheets.

6.1 Cold Atoms

Instead of graphene one may consider, and people have discussed, metrics in the
context of cold atoms in Bose-Einstein condensates [20].

7 Conclusion and Propects

In this talk I have described on some areas of non-gravitational physics where ana-
logues of basic ideas in general relativity come into play. They include

1. Dynamic Casimir effect
2. Water and sound waves
3. Cloaking and other devices using metamaterials
4. Nematic liquid crystals
5. Graphene

Other areas not covered include

1. Bose-Einstein condensate
2. Dirac metals
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3. Smectcs and blue phases in liquid crystals
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