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Abstract I reconsider Einstein’s 1912 “Prague-Theory” of static gravity based on a
scalar field obeying a non-linear field equation. I point out that this equation follows
from the self-consistent implementation of the principle that all forms of energy
are the source of the gravitational field according to E = mc2. This makes it an
interesting toy-model for the “flat-space approach” to General Relativity (GR), as
pioneered by Kraichnan and later Feynman. Solutions modelling stars show features
familiar from GR, e.g., Buchdahl-like inequalities. The relation to full GR is also
discussed. This lends this toy theory also some pedagogical significance.

1 Introduction

Ever since he wrote his large 1907 review of Special Relativity [1] for the Jahrbuch
der Radioaktivität und Elektronik, Einstein reflected on how to extend the principle
of relativity to non-inertial motions. His key insight was that such an extension is
indeed possible, provided gravitational fields are included in the description. In fact,
the last chapter (V) of [1], which comprises four (17-20) out of twenty sections, is
devoted to this intimate relation between acceleration and gravitation. The heuristic
principle Einstein used was his “Äquivalenzhypothese” (hypothesis of equivalence)
or “Äquivalenzprinzip” (principle of equivalence)1, which says this: Changing the
description of a system from an inertial to a non-inertial reference frame is equiv-
alent to not changing the frame at all but adding a special gravitational field. This
principle is heuristic in the sense that it allows to deduce the extension of physical
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laws, the forms of which are assumed to be known in the absence of gravitational
fields, to the presence of at least those special gravitational fields that can be “cre-
ated” by mere changes of reference frames. The idea behind this was, of course, to
postulate that the general features found in this fashion remain valid in all gravi-
tational fields. In the 1907 review Einstein used this strategy to find out about the
influence gravitational fields have on clocks and general electromagnetic processes.
What he did not attempt back in 1907 was to find an appropriate law for the gravi-
tational field that could replace the Poisson equation of Newtonian gravity. This he
first attempted in his two “Prague papers” from 1912 [2][3] for static fields. The pur-
pose of my contribution here is to point out that the field equation Einstein arrived
at in the second of these papers is not merely of historical interest.

After 1907 Einstein turned away from gravity research for a while, which
he resumed in 1911 with a paper [4], also from Prague, in which he used the
“Äquivalenzhypothese” to deduce the equality between gravitational and inertial
mass, the gravitational redshift, and the deflection of light by the gravitational field
of massive bodies. As is well known, the latter resulted in half the amount that was
later correctly predicted by GR.

In the next gravity paper [2], the first in 1912, entitled “Lichtgeschwindigkeit
und Statik des Gravitationsfeldes”, Einstein pushed further the consequences of his
heuristics and began his search for a sufficiently simple differential equation for
static gravitational fields. The strategy was to, first, guess the equation from the
form of the special fields “created” by non inertial reference frames and, second,
generalise it to those gravitational fields generated by real matter. Note that the
gravitational acceleration was to be assumed to be a gradient field (curl free) so that
the sought-after field equation was for a scalar field, the gravitational potential.

The essential idea in the first 1912 paper is to identify the gravitational potential
with c, the local velocity of light.2 Einstein’s heuristics indicated clearly that Special
Relativity had to be abandoned, in contrast to the attempts by Max Abraham (1875-
1922), who published a rival theory [5][6] that was superficially based on Poincaré
invariant equations (but violated Special Relativity in abandoning the condition that
the four-velocities of particles had constant Minkowski square). In passing I remark
that Einstein’s reply [7] to Abraham, which is his last paper from Prague before his
return to Zürich, contains in addition to his anticipation of the essential physical
hypotheses on which a future theory of gravity could be based (here I refer to Jiřı́
Bičák’s contribution to this volume), also a concise and very illuminating account of
the physical meaning and limitation of the special principle of relativity, the essence
of which was totally missed by Abraham.

Back to Einstein’s first 1912 paper, the equation he came up with was

∆c = kcρ , (1)

2 Since here we will be more concerned with the mathematical form and not so much the ac-
tual derivation by Einstein, we will ignore the obvious objection that c has the wrong physical
dimension, namely that of a velocity, whereas the proper gravitational potential should have the
dimension of a velocity-squared.
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where k is the “universal gravitational constant” and ρ is the mass density. The
mathematical difference between (1) and the Poisson equation in Newtonian gravity
is that (1) is homogeneous (even linear) in the potential. This means that the source
strength of a mass density is weighted by the gravitational potential at its location.
This implies a kind of “red-shift” for the active gravitational mass which in turn
results in the existence of geometric upper bounds for the latter, as we will discuss
in detail below. Homogeneity was Einstein’s central requirement, which he justified
from the interpretation of the gravitational potential as the local velocity of light,
which is only determined up to constant rescalings induced from rescalings of the
timescale.

Already in a footnote referring to equation (1) Einstein points out that it cannot
be quite correct, as he is to explain in detail in a follow-up paper [3]. This second
paper of 1912 is the one I actually wish to focus on in my contribution here. It
appeared in the same issue of the Annalen der Physik as the previous one, under
the title “Zur Theorie des statischen Gravitationsfeldes” (on the theory of the static
gravitational field). In it Einstein once more investigates how the gravitational field
influences electromagnetic and thermodynamic processes according to what he now
continues to call the “Aquivalenzprinzip”, and derives from it the equality of inertial
and gravitational mass.3

After that he returns to the equation for the static gravitational field and considers
the gravitational force-density f, acting on ponderable matter of mass density ρ ,
which is given by (Einstein writes σ instead of our ρ)

f =−ρ∇c . (2)

Einstein observes that the space integral of f does not necessarily vanish on account
of (1), in violation of the principle that actio equals reactio. Terrible consequences,
like self-acceleration, have to be envisaged.4 He then comes up with the following
non-linear but still homogeneous modification of (1):

3 Einstein considers radiation enclosed in a container whose walls are “massless” (meaning van-
ishing rest-mass) but can support stresses, so as to be able to counteract radiation pressure. Einstein
keeps repeating that equality of both mass types can only be proven if the gravitational field does
not act on the stressed walls. That remark is hard to understand in view of the fact that unbal-
anced stresses add to inertia, as he well knew from his own earlier investigations [8]. However,
as explained by Max Laue a year earlier [9], the gravitational action on the stressed walls is just
cancelled by that on the stresses of the electromagnetic field, for both systems together form a
“complete static system”, as Laue calls it. A year later, in the 1913 “Entwurf” paper with Marcel
Grossmann [10], Einstein again used a similar Gedankenexperiment with a massless box con-
taining radiation immersed in a gravitational field, by means of which he allegedly shows that any
Poincaré invariant scalar theory of gravity must violate energy conservation. A modern reader must
ask how this can possibly be, in view of Noether’s theorem applied to time-translation invariance.
A detailed analysis [11] shows that this energy contains indeed the expected contribution from the
tension of the walls, which may not be neglected.
4 “Anderenfalls würde sich die Gesamtheit der in dem betrachteten Raume befindlichen Massen,
die wir auf einem starren, masselosen Gerüste uns befestigt denken wollen, sich in Bewegung zu
setzen streben.” ([3], p. 452)
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∆c = k
{

cρ +
1
2k

∇c ·∇c
c

}
. (3)

In the rest of this paper we will show how to arrive at this equation from a differ-
ent direction and discuss some of its interesting properties as well as its relation to
the description of static gravitational fields in GR.

2 A self-consistent modification of Newtonian Gravity

The following considerations are based on [12]. We start from ordinary Newtonian
gravity, where the gravitational field is described by a scalar function ϕ whose phys-
ical dimension is that of a velocity-squared. It obeys

∆φ = 4πGρ . (4)

The force per unit volume that the gravitational field exerts upon a distribution of
matter with density ρ is

f =−ρ∇φ . (5)

This we apply to the force that the gravitational field exerts upon its own source
during a real-time process of redistribution. This we envisage as actively transport-
ing each mass element along the flow line of a vector field ξ . To first order, the
change δρ that ρ suffers in time δ t is given by

δρ =
−Lδξ

(
ρd3x

)
d3x

=−∇ · (δξ ρ) , (6)

where δξ = δ t ξ and Lδξ is the Lie derivative with respect to δξ . We assume the
support supp(ρ) =: B ⊂ R3 to be compact. In general, this redistribution costs en-
ergy. The work we have to invest for redistribution is, to first order, just given by

δA =−
∫
R3

δξ · f =−
∫

B
φ∇ · (δξ ρ) =

∫
B

φ δρ , (7)

where we used (6) in the last step and where we did not write out the Lebesgue
measure d3x to which all integrals refer. Note that in order to obtain (7) we did
not make use of the field equation. Equation (7) is generally valid whenever the
force-density relates to the potential and the mass density as in (5).

Now we make use of the field equation (4). We assume the redistribution-process
to be adiabatic, that is, we assume the instantaneous validity of the field equation at
each point in time throughout the process. This implies

∆δφ = 4πGδρ . (8)

Hence, using (7), the work invested in the process of redistribution is (to first order)
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δA =
∫

B
φ δρ = δ

{
− 1

8πG

∫
R3
(∇φ)2

}
. (9)

If the infinitely dispersed state of matter is assigned the energy-value zero, then
the expression in curly brackets is the total work invested in bringing the infinitely
dispersed state to that described by the distribution ρ . This work must be stored
somewhere as energy. Like in electro-statics and -dynamics, we take a further logical
step and assume this energy to be spatially distributed in the field according to the
integrand. This leads to the following expression for the energy density of the static
gravitational field

ε =− 1
8πG

(∇φ)2 . (10)

All this is familiar from Newtonian gravity. But now we go beyond Newtonian grav-
ity and require the validity of the following

Principle. All forms of energy, including that of the gravitational field itself, shall
gravitate according to E = mc2.

This principle implies that if we invest an amount of work δA in a system its (active)
gravitational mass will increase by δA/c2.

Now, the (active) gravitational mass Mg is defined by the flux of the gravitational
field to spatial infinity (i.e. through spatial spheres as their radii tend to infinity):

Mg =
1

4πG

∫
S2

∞
n ·∇φ =

1
4πG

∫
R3

∆φ . (11)

Hence, making use of the generally valid equation (7), the principle that δA = Mgc2

takes the form ∫
B

φ δρ =
c2

4πG

∫
R3

∆δφ . (12)

This functional equation relates φ and ρ , over and above the restriction imposed
on their relation by the field equation. However, the latter may - and generally will
- be inconsistent with this additional equation. For example, the Newtonian field
equation (4) is easily seen to manifestly violate (12), for the right-hand side then
becomes just the integral over c2δρ , which always vanishes on account of (6) (or
the obvious remark that the redistribution clearly does not change the total mass),
whereas the left hand side will generally be non-zero. The task must therefore be to
find field equation(s) consistent with (12). Our main result in that direction is that
the unique generalisation of (4) which satisfies (12) is just (3), i.e. the field equation
from Einstein’s second 1912 paper.

Let us see how this comes about. A first guess for a consistent modification of
(4) is to simply add ε/c2 to the source ρ:

∆φ = 4πG
(

ρ − 1
8πGc2

(
∇φ
)2
)
. (13)



6 Domenico Giulini

But this cannot be the final answer because this change of the field equation also
brings about a change in the expression for the self-energy of the gravitational field.
That is, the term in the bracket on the right-hand side is not the total energy ac-
cording to this equation, but according to the original equation (4). In other words:
equation (13) still lacks self-consistency. This can be corrected for by iterating this
procedure, i.e., determining the field’s energy density according to (13) and correct-
ing the right-hand side of (13) accordingly. Again we have changed the equation,
and this goes on ad infinitum. But the procedure converges to a unique field equa-
tion, similarly to the convergence of the “Noether-procedure”5 that leads from the
Poincaré invariant Pauli-Fierz theory of spin-2 mass-0 fields in flat Minkowski space
to GR [13][14][15].

In our toy model the convergence of this procedure is not difficult to see. We
start from the definition (11) and calculate its variation δMg assuming the validity
of (13). From what we said above we know already that this is not yet going to
satisfy (12). But we will see that from this calculation we can read off the right
redefinitions.

We start by varying (11):

δMg =
1

4πG

∫
∆δφ . (14)

We replace ∆δφ with the variation of the right-hand side of (13). Partial integration
of the non-linear part gives us a surface term whose integrand is ∝ φ∇δφ = O(r−3)
and hence vanishes. The remaining equation is

δMg =
∫

B
δρ +

1
4πG

∫
R3

( φ
c2

)
∆δφ . (15)

Playing the same trick (of replacing ∆δφ with the variation of the right-hand side of
(13) and partial integration, so as to collect all derivatives on δφ) again and again,
we arrive after N steps at

δMg =
∫

B

N−1

∑
n=0

1
n!

( φ
c2

)n
δρ +

1
N!c2N

1
4πG

∫
R3

φNδ (∆φ) . (16)

As φ is bounded for a regular matter distribution, and the spatial integral over δ∆φ
is just 4πGδMg, the last term tends to zero for N → ∞. Hence

δMg =
∫

B
δρ exp(φ/c2) . (17)

This is of the desired form (12) required by the principle, provided we redefine the
gravitational potential to be Φ rather than φ , where

Φ := c2 exp(φ/c2) . (18)

5 Pioneered by Robert Kraichnan in his 1947 MIT Bachelor thesis “Quantum Theory of the Linear
Gravitational Field”.
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Saying that Φ rather than φ is the right gravitational potential means that the force
density is not given by (5), but rather by

f =−ρ∇Φ . (19)

As we have made use of equation (13) in order to derive (17), we must make sure to
keep that equation, just re-expressed in terms of Φ . This leads to

∆Φ =
4πG
c2

[
ρΦ +

c2

8πG
(∇Φ)2

Φ

]
(20)

which is precisely Einstein’s improved “Prague equation” (3) with k = 4π G/c2.
Note from (18) that the asymptotic condition φ(r → ∞) → 0 translates to Φ(r →
∞)→ c2. Note also that for r → ∞ the 1/r2-parts of ∇φ and ∇Φ coincide, so that in
the expressions (11) for Mg we may just replace φ with Φ :

Mg =
1

4πG

∫
S2

∞
n ·∇Φ =

1
4πG

∫
R3

∆Φ . (21)

The principle now takes the form (12) with φ replaced by Φ . It is straightforward to
show by direct calculation that (12) is indeed a consequence of (20), as it must be.
It also follows from (20) that the force density (19) is the divergence of a symmetric
tensor:

fa =−∇btab , (22a)

where

tab =
1

4πGc2

{
1
Φ
[
∇aΦ∇bΦ − 1

2 δab(∇Φ)2]} . (22b)

This implies the validity of the principle that actio equals reactio that Einstein de-
manded. This was Einstein’s rationale for letting (3) replace (1).

Finally we mention that (20) may be linearised if written in terms of the square-
root of Φ :

Ψ :=

√
Φ
c2 . (23)

One gets

∆Ψ =
2πG
c2 ρΨ . (24)

This helps in finding explicit solutions to (20). Note that Ψ is dimensionless.

3 Spherically symmetric solutions

In this section we discuss some properties of spherically symmetric solutions to (24)
for spherically symmetric mass distributions ρ of compact support. In the following
we will simply refer to the object described by such a mass distribution as “star”.
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In terms of χ(r) := rΨ(r) equation (24) is equivalent to

χ ′′ =
2πG
c2 ρ χ . (25)

The support of ρ is a closed ball of radius R, called the star’s radius. For r < R we
shall assume ρ(r)≥ 0 (weak energy condition). We seek solutions which correspond
to everywhere positive and regular Ψ and hence everywhere positive and regular Φ .
In particular Φ(r = 0) and Ψ(r = 0) must be finite. For r > R equation (25) implies
χ ′′ = 0, the solution to which is

χ+(r) = rΨ+(r) = r−Rg , for r > R , (26)

where Rg denotes the gravitational radius

Rg :=
GMg

2c2 . (27)

Rg comes in because of (21), which fixes one of the two integration constants, the
other being fixed by Ψ(∞) = 1.

Let χ− denote the solution in the interior of the star. Continuity and differentia-
bility at r = R gives χ−(R) = R−Rg and χ ′

−(R) = 1. We observe that χ−(R) ≥ 0.
For suppose χ−(R)< 0, then (25) and the weak energy condition imply χ ′′(R)≤ 0.
But this implies that for r ∈ [0,R] the curve r 7→ χ−(r) lies below the straight line
r 7→ r − Rg and assumes a value less than −Rg at r = 0, in contradiction to the
finiteness of Ψ(r = 0) which implies χ−(r = 0) = 0. Hence we have

Theorem 1. The gravitational radius of a spherically symmetric star is universally
bound by its (geometric) radius, Rg ≤ R. Equivalently expressed in terms of Mg we
may say that the gravitational mass is universally bound above by

Mg <
2c2R

G
. (28)

This may be seen in analogy to Buchdahl’s inequality in GR [16], which, using
the isotropic (rather than Schwarzschild) radial coordinate, would differ from (28)
only by an additional factor of 8/9 on the right-hand side. The Buchdahl bound is
optimal, being saturated by the interior Schwarzschild solution for a homogeneous
star.

So let us here, too, specialise to a homogeneous star,

ρ(r) =

{
3Mb
4πR3 for r ≤ R
0 for r > R ,

(29)

where Mb is called the bare mass (integral over ρ). It is convenient to introduce the
radii corresponding to bare and gravitational masses, as well as their ratio to the
star’s radius R:
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Rb :=
GMb

2c2 , x :=
Rb

R
, (30a)

Rg :=
GMg

2c2 , y :=
Rg

R
. (30b)

We also introduce the inverse length

ω :=
1
R
·
√

3Rb

R
, (31)

so that (25) just reads χ ′′ = ω2χ . From this the interior solution is easily obtained.
If written in terms of Ψ it reads

Ψ−(r) =
1

cosh(ωR)
sinh(ωr)

ωr
, for r < R . (32)

As a result of the matching to the exterior solution given in (26), Rg is determined
by R and ω , i.e. R and Rb. In terms of x and y this relation takes the simple form

y = 1−
tanh

(√
3x
)

√
3x

, (33)

which convex-monotonically maps [0,∞) onto [0,1). The fact that y < 1 for all x is
just the statement of the Theorem applied to the homogeneous case.

If x = Rb/R ≪ 1 we have y = x− 6
5 x2 + · · · , which for Etotal := Mgc2 reads

Etotal = Mbc2 (1− 3
5 x+O(x2)

)
. (34)

We note that −3Mbc2x/5 = − 3
5 GM2

b/R is just the Newtonian binding energy of a
homogeneous star. In view of our Principle it makes good sense that to first order
just this amount is subtracted from the bare mass in order to obtain the active grav-
itational mass. In Newtonian gravity this negative amount is just identified with the
field’s self-energy, but here the interpretation is different: The two terms that act as
source for the gravitational field in (20) are the matter part, which is proportional to
ρ but diminished by Φ , and the field’s own part, which is proportional to (∇Φ)2/Φ
and positive definite! Their contributions are, respectively,

Ematter =
∫

B
ρΦ = Mbc2 (1− 6

5 x+O(x2)
)
, (35)

Efield =
c2

8πG

∫
R3

(∇Φ)2

Φ
= Mbc2 ( 3

5 x+O(x2)
)
. (36)

Hence even though the total energy is decreased due to binding, the gravitational
field’s self energy increases by the same amount. Twice that amount is gained from
the fact that the matter-energy is “red-shifted” by being multiplied with Φ , so energy
is conserved (of course).

Two more consequences, which are related, are noteworthy:
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• Unlike in Newtonian theory, objects with non-zero gravitational mass cannot be
modelled by point sources. In the spherically symmetric case this is an immediate
consequence of (28), which implies Mg → 0 for R → 0. Hence there are no δ -like
masses.

• Unlike in Newtonian gravity, unlimited compression of matter does not lead to
unlimited energy release. Consider a sequence of homogeneous (just for simplic-
ity) stars of fixed bare mass Mb and variable radius R, then the gravitational mass
Mg as function of x = Rb/R is given by

Mg(x) = Mb ·

{
1
x
·

(
1−

tanh
(√

3x
)

√
3x

)}
. (37)

The function in curly brackets6 is a strictly monotonically decreasing function
[0,∞] 7→ [1,0]. This shows that for infinitely dispersed matter, where R → ∞ and
hence x → 0, we have Mg(x = 0) = Mb, as expected, and that for infinite com-
pression Mg(x → ∞) = 0. As the gained energy at stage x is (Mb −Mg(x))c2, we
can at most gain Mbc2.

4 Relation to General Relativity

Finally I wish to briefly comment on the relation of equation (3) or (20) to GR. Since
Einstein’s 1912 theory was only meant to be valid for static situations, I will restrict
attention to static spacetimes (M,g). Hence I assume the existence of a timelike and
hypersurface orthogonal Killing field K. My signature convention shall be “mostly
plus”, i.e. (−,+,+,+).

We choose adapted coordinates (t,xa), a = 1,2,3, where the level sets of t are the
integral manifolds of the foliation defined by K and K = ∂/∂ (ct). We can then write
the metric in a form in which the coefficients do not depend on t (called “time”) ,

g =−Ψ 2(x)c2 dt ⊗dt + ĝab(x)dxa ⊗dxb . (38)

Clearly c2Ψ 2 = −g(K,K). From now on, all symbols with hats refer to the spatial
geometry, like the spatial metric ĝ.

The t-component of the geodesic equation is equivalent to Ψ 2ṫ = const, where
an overdot refers to the derivative with respect to an affine parameter. This equation
allows us to eliminate the affine parameter in favour of t in the spatial components
of the geodesic equation. If we set7

Ψ =

√
2Φ
c2 (39)

6 Its Taylor expansion at x = 0 is 1−6x/5+51x2/35+ · · · .
7 This differs by a factor of 2 from (23) which we need and to which we return below.
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they read
d2xa

dt2 + Γ̂ a
bc

dxb

dt
dxc

dt
=−Φ,bĝab +Φ,b

[
1
Φ

dxa

dt
dxb

dt

]
, (40)

where the Γ̂ a
bc are the Christoffel coefficients for ĝ, and Φ,a = ∂aΦ . This should

be compared with (19) together with Newton’s second law, which give d2x/dt2 =
−∇Φ . As we did not attempt to include special relativistic effects in connection
with high velocities, we should consistently neglect terms v2/c2 in (40). This results
in dropping the rightmost term. The rest has the pseudo-Newtonian form in arbitrary
(not just inertial) spatial coordinates. A non-zero spatial curvature would, of course,
be a new feature not yet considered.

The curvature and Ricci tensors for the metric (38) are readily computed, most
easily by using Cartan’s structure equations:

Ric(n,n) =Ψ−1 ∆̂Ψ , Rab = R̂ab −Ψ−1 ∇̂a∇̂bΨ . (41)

Here n = Ψ−1∂/c∂ t is the unit timelike vector characterising the static reference
frame, ∇̂ is the Levi-Civita covariant derivative with respect to ĝ, and ∆̂ is the cor-
responding Laplacian.

Using this in Einstein’s equations

Rµν =
8πG
c4

(
Tµν − 1

2 gµν T λ
λ

)
(42)

for pressureless (we neglect the pressure since it enters multiplied with c−2) dust at
rest and of mass-density ρ in the static frame, i.e.

Tµν = ρc2nµ nν , (43)

we get

∆̂Ψ =
4πG
c2 ρΨ time component , (44a)

∇̂a∇̂bΨ = R̂abΨ space components . (44b)

We note that, apart from the space curvature, (44a) is almost—but not quite—
identical to (24). They differ by a factor of 2! Rewriting (44a) in terms of Φ accord-
ing to (39), we get

∆̂Φ =
8πG
c2

[
ρΦ +

c2

16πG
ĝab∇̂aΦ∇̂bΦ

Φ

]
. (45)

This differs from (20) by the same factor of 2 (i.e., G → 2G). Note that we cannot
simply remove this factor by rescaling Ψ and Φ , as the equations are homogeneous
in these fields. Note also that the overall scale of Φ is fixed by (40): It is the gradient
of Φ , and not a multiple thereof, which gives the acceleration. But then there is
another factor of 2 in difference to our earlier discussion: If the metric (38) is to
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approach the Minkowski metric far away from the source, then Ψ should tend to
one and hence Φ should asymptotically approach c2/2 according to (39). In (20),
however, Φ should asymptotically approach c2, i.e. twice that value. This additional
factor of 2 ensures that both theories have the same Newtonian limit. Indeed, if we
expand the gravitational potential Φ of an isolated object in a power series in G, this
implies that the linear terms of both theories coincide. However, the quadratic terms
in GR are twice as large as in our previous theory based on (19) and (20). This is not
quite unexpected if we take into account that in GR we also have the space curvature
that will modify the fields and geodesics in post Newtonian approximations. We note
that the spatial Einstein equations (44b) prevent space from being flat. For example,
taking their trace and using (44a) shows that the scalar curvature of space is, in fact,
proportional to the mass density.

Finally we show that the total gravitational mass in GR is just given by the same
formula (21), where Φ is now that used here in the GR context. To see this we
recall that for spatially asymptotically flat spacetimes the overall mass (measured at
spatial infinity) is given by the ADM-mass. Moreover, for spatially asymptotically
flat spacetimes which are stationary and satisfy Einstein’s equations with sources of
spatially compact support, the ADM mass is given by the Komar integral (this is,
e.g., proven in Theorem 4.13 of [17]). Hence we have

MADM =
c2

8πG

∫
S2

∞
⋆dK♭ . (46)

Here K = ∂/∂ (ct), and K♭ := g(K, ·) = −Ψ 2cdt is the corresponding 1-form. The
star, ⋆, denotes the Hodge-duality map. Using (39) and asymptotic flatness it is
now straightforward to show that the right hand side of (46) can indeed be written
in the form of the middle term in (21). This term only depends on Φ at infinity,
i.e. on the Newtonian limit, and hence it gives a value independent of the factor-2
discrepancy discussed above. In that sense the active gravitational mass Mg defined
earlier corresponds to MADM in the GR context.

This ends our discussion of Einstein’s 1912 scalar field equation, which is thus
seen to contain many interesting features we know from GR, albeit in a pseudo
Newtonian setting.
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