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Abstract Causal Dynamical Triangulations (CDT) is a background independent
approach to quantum gravity. In this paper we introduce a phenomenological trans-
fer matrix model, where at each time step a reduced set of quantum states is used.
The states are solely characterized by the discretized spatial volume. Using Monte
Carlo simulations we determine the effective transfer matrix elements and extract
the effective action for the scale factor. In this framework no degrees of freedom are
frozen, however, the obtained action agrees with the minisuperspace model.

1 Introduction

The model of Causal Dynamical Triangulations (CDT) was proposed some years
ago by J. Ambjørn, J. Jurkiewicz and R. Loll with the aim of defining a lattice formu-
lation of quantum gravity from first principles [1, 2]. The foundation of this model
is the formalism of path-integrals applied to quantize a theory of gravitation. The
quantum gravity path integral is regularized by discretizing the spacetime geome-
try g with piecewise linear manifold T . The building blocks of four dimensional
CDT are four-simplices, which properly glued along their faces form a simplicial
manifold.

An important assumption of CDT is the causality condition. As a consequence
of the original Lorentzian signature of spacetime, only causal geometries should
contribute to the integral. We will consider globally hyperbolic pseudo-Riemannian
manifolds which allow introducing a global proper-time foliation. The leaves of the
foliation are spatial three-dimensional Cauchy surfaces called slices. Because topol-
ogy changes of the spatial slices are often associated with causality violation, we
forbid the topology of the leaves to alter in time. For simplicity, we chose the spatial
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slices to have a fixed topology of a three-sphere, and establish periodic boundary
conditions in the time direction. Therefore, the spacetime topology is M = S1 ×S3.
Spatial slices of a triangulation are enumerated by a discrete time coordinate t. Such
time coordinate is assigned to each vertex of the triangulation, bringing on a distinc-
tion between space-like links of length as and time-like links of length at . Because
each simplex contains vertices lying in two consecutive spatial slices, there are two
kinds of simplices: first of a type {4,1} with four vertices lying in one spatial slice
and one in the neighboring slice, and second of a type {3,2} with three vertices ly-
ing in one spatial slice and two in the adjacent slice. The Wick rotation is performed
by the analytic continuation to imaginary lengths of the time-like links at → iat . The
regularized partition function Z is now written as a sum over causal triangulations
T ,

Z =
∫

D [g]eiSEH [g] → ∑
T

e−S[T ]. (1)

The Einstein-Hilbert action SEH [g] = 1
16πG

∫
dt

∫
d3x

√
−g(R− 2Λ) evaluated on a

simplicial manifold T composed of N4 simplices, among them N41 being of type
{4,1}, and N0 vertices, gives the discrete Regge action,

S[T ] =−K0 N0 +K4 N4 +∆ (N41 −6N0), (2)

where K0, K4 and ∆ are bare coupling constants, and naively they are functions of
G,λ and at ,as.

We applied Monte Carlo techniques, and using the Regge action (2), measured
expectation values of observables within the CDT framework. The simplest observ-
able is the scale factor a(t), or more conveniently the three-volume nt defined as the
number of tetrahedra building slice t.

For a certain range of the coupling constants, a typical configuration is bell-
shaped, with the average volume profile ⟨nt⟩ ∝ cos3(t/B). The emerged background
geometry behaves like a well defined four-dimensional manifold and is perfectly
consistent with a Euclidean de Sitter universe, the classical vacuum solution of a
spatially homogeneous and isotropic minisuperspace model [3]. In earlier work we
have shown [4] that the discretized minisuperspace action,

S[nt ] =
1
Γ ∑

t

(
(nt+1 −nt)

2

nt+1 +nt
+µn1/3

t −λnt

)
, (3)

describes well not only the measured ⟨nt⟩ but also the fluctuations

Ctt ′ = ⟨(nt −⟨nt⟩)(nt ′ −⟨nt ′⟩)⟩. (4)

The effective action (3) couples only adjacent slices. Such form suggests that there
exists an effective transfer matrix labeled only by the scale factor.
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2 The transfer matrix

The model of Causal Dynamical Triangulations is completely determined by a trans-
fer matrix M labeled by three-dimensional triangulations τ . The matrix element
⟨τ1|M |τ2⟩ denotes the transition amplitude in one time step between states corre-
sponding to triangulations τ1 and τ2. It is given by the sum over all four-dimensional
triangulations T of a slab, with boundary triangulations τ1 and τ2,

⟨τ1|M |τ2⟩= ∑
T |τ1 ,τ2

e−S[T ].

The transfer matrix M depends both on the entropy factor, which counts the number
of triangulations T connecting the boundaries in one time step, and the Regge ac-
tion S[T ]. The partition function (1) corresponding to T time steps is then expressed
in terms of the matrix M ,

Z = ∑
T

e−S[T ]
= TrM T . (5)

The probability of finding a configuration with T spatial slices given by three-
dimensional triangulations τ1,τ2, . . . ,τT is

P(T )(τ1, . . . ,τT ) =
1
Z
⟨τ1|M |τ2⟩⟨τ2|M |τ3⟩ . . .⟨τT |M |τ1⟩. (6)

We used partition function (5) in Monte Carlo simulations. The measurements
performed so far, have been concentrated on the measurement of the three-volume
nt . The probability P(T )(n1, . . . ,nT ) of finding a configuration with spatial volumes
n1,n2, . . . ,nT is given by a proper sum of partial probabilities (6). Let T3(n) denote
the subset of three-dimensional triangulations which are built of exactly n three-
simplices. We use the projection operator ρ(n)≡ |n⟩⟨n| on the subspace spanned by
T3(n),

ρ(n)≡ |n⟩⟨n| ≡ ∑
τ∈T3(n)

|τ⟩⟨τ|. (7)

to express the probability P(T )(n1, . . . ,nT ),

P(T )(n1, . . . ,nT ) =
1
Z

Tr [|n1⟩⟨n1|M |n2⟩⟨n2|M |n3⟩ . . .⟨nT |M ] . (8)

In (8) it is misleading to think of the aggregated “state” |n⟩ as a normalized sum of
the vectors |τ⟩, τ ∈ T3(n). Such a vector would again be a single vector located in the
space spanned by the |τ⟩’s. It is more appropriate to interpret the “state” associated
with n as arising from a classical uniform probability distribution of states |τ⟩ and
in this way to treat ρ(n) as the associated density operator.

As mentioned in the Introduction, the form of the effective action (3) obtained
from the covariance matrix (4) suggests that there exists an effective transfer matrix
⟨n|M|m⟩ whose elements are labeled by the three-volumes and that it is possible to
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effectively decompose observed distributions P(T )(n1, . . . ,nT ) into a product

P(T )(n1, . . . ,nT ) =
1
Z
⟨n1|M|n2⟩⟨n2|M|n3⟩ · · · ⟨nT |M|n1⟩. (9)

The effective transfer matrix M depends only on the coupling constants K0, ∆ and
K4 but not on the number of slices T . In analogy to (6), the elements of the effective
transfer matrix correspond to transition amplitudes in one time step between states
of a given three-volume.

3 Measurements

In the following, we will assume that we can work with an effective transfer matrix
⟨n|M|m⟩ and will show that equation (9) provides a very good approximation of
measured data [5].

For simplicity, let us define the two-point function,

P(T )(nt ,nt+∆ t) =
1
Z
⟨nt |M∆ t |nt+∆ t⟩⟨nt+∆ t |MT−∆ tnt⟩ (10)

by summing (9) over all three-volumes except for times t and t +∆ t. The simplest
way to measure the matrix elements ⟨n|M|m⟩, up to a normalization, is to consider
T = 2,

⟨n|M|m⟩ ∝
√

P(2)(n1 = n,n2 = m).

The effective transfer matrix elements can be measured in various ways. In par-
ticular, as follows from (10) for T = 3,4, we have

⟨n|M|m⟩ ∝
P(3)(n1 = n,n2 = m)√
P(4)(n1 = n,n3 = m)

. (11)

We tested, that the elements ⟨n|M|m⟩ measured in different ways completely agreed
up to numerical noise, supporting validity of equation (9). For technical reasons,
most measurements were performed using expression (11).

The coupling constant K4 in (2) plays a role of a cosmological constant. To cor-
rectly perform simulations, we have to approach with K4 very close to its critical
value Kcrit

4 . To efficiently probe the desired range of the three-volume, we added to
the Regge action (2) a quadratic term to fix nt around nvol ,

S → S+ ε ∑
t
(nt −nvol)

2.

Because it is consistent with the decomposition (9), its effect can be easily canceled.
For technical reasons, we measured the transfer matrix M separately for a few over-
lapping ranges of the three-volume.
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Fig. 1 Left: The empirical transfer matrix for range 1200 < nt < 1600. Right: The difference
between the empirical and theoretical matrices disappears in the numerical noise.

4 The effective action

The effective action obtained from the covariance matrix (4) is directly related to the
effective transfer matrix M. The minisuperspace action (3) suggests that the effective
transfer matrix given by

⟨n|M|m⟩= N e
− 1

Γ

[
(n−m)2

n+m +µ( n+m
2 )

1/3−λ n+m
2

]
(12)

is a good approximation in the bulk where nt is large 1. Further, we will measure the
empirical transfer matrix elements ⟨n|M|m⟩, extract the parameters Γ , µ and λ , and
check that (12) is indeed a good approximation of the data. The measured effective
transfer matrix M, for range 1200 < nt < 1600, is presented in Fig. 1 (left graph).
The right graph shows the difference between the measured matrix M and the best
fit (12). Indeed, the difference disappears in the numerical noise proving that the
approximation (12) is very good.

The measurements presented in this paper were performed for coupling constants
K0 = 2.2, ∆ = 0.6 and K4 = 0.922.

4.1 The kinetic term

To get a better estimation of the parameters associated with the effective action (3)
and (12), we first try to fit only the parameters of the kinetic term which is the
dominating term from a numerical point of view. We do that by keeping the sum of
the entries, i.e. n+m, fixed such that the potential term is not changing. In this way

1 We slightly modified the form of the potential term. Such parametrization is more convenient to
extract the parameters of the action.
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Fig. 2 ⟨n|M|c−n⟩ plotted as a function of n for various values of c (dots). Gaussian fits are drawn
with a line.
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Fig. 3 The coefficient k(c) in the kinetic term as a function of c = n+m, (different colors denote
different ranges) and a linear fit k(n+m) = Γ · (n+m) (red line).

we determine Γ with high accuracy. The matrix elements for constant n+m = c
show the expected Gaussian dependence on n (see Fig. 2),

⟨n|M|m⟩= ⟨n|M|c−n⟩= N (c)exp
[
− (2n− c)2

Γ · c

]
, (13)

where the terms in the effective action which only depend on c are included in the
normalization.

We expect the denominator of the kinetic term k(c) to behave like k(n+m) =
Γ · (n+m). As shown in Fig. 3 this is indeed true and the parameter Γ is constant
in the whole range of the three-volumes. The best linear fit gives Γ = 26.07±0.05.
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This result is consistent with the values obtained from the fits for separate ranges of
nt .

4.2 The potential term
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Fig. 4 log⟨n|M|n⟩ of the scaled transfer matrix (dots, different colors denote different ranges)
compared with the fit of the potential term −Le f f (red line, which stops at n = 400).

The potential part of the effective Lagrangian Le f f may be extracted from the
diagonal elements of the transfer matrix,

Le f f (n,n) =− log⟨n|M|n⟩+ const =
1
Γ

(
µn1/3 −λn

)
. (14)

For technical reasons, we measured the transfer matrix M separately for a few
different ranges of the three-volume. Because, the normalization is not uniquely
defined, in order to merge the effective Lagrangian, the constant in (14) has to be
properly adjusted. The measured merged effective Lagrangian is shown in Fig. 4.
The colors denote different ranges for which the transfer matrix was measured. Fig.
4 presents also the fit of form (14). In the bulk region, where nt is large enough, the
theoretical expectation (14) fits very well. The measured values are µ = 16.5±0.2
and λ = 0.049± 0.001, where we took Γ = 26.07. Again, this result is consistent
with the values obtained from the fits for separate ranges of nt .
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5 Conclusions

The model of Causal Dynamical Triangulations comes with a transfer matrix
⟨τ1|M |τ2⟩. The measured distributions of the three-volumes nt , e.g. P(T )(nt ,nt+∆ t),
have an exact definition in terms of the full transfer matrix M and the density ma-
trix |n⟩⟨n|. The actual data coming from Monte Carlo simulations seem to allow for
a much simpler description in terms of an effective transfer matrix M, labeled by
abstract vectors |n⟩ referring only to the three-volume. The effective transfer matrix
M allows to directly measure the effective action S[nt ]. An important advantage of
the present method, since the number of slices T is small, is a much faster mea-
surement of the transfer matrix compared to the covariance matrix, which was used
previously to extract the effective action. Basically over the whole range of nt the
effective transfer matrix elements can be represented as

⟨n|M|m⟩= N e
− 1

Γ

[
(n−m)2

n+m +µ( n+m
2 )

1/3−λ n+m
2

]
,

with high accuracy. This result is fully consistent with the reduced minisuperspace
action (3), although in CDT we do not freeze any degrees of freedom.

An issue not addressed in this article, is the problem of small three-volumes. For
small nt we do not observe a Gaussian distribution of the three-volume nt around the
mean value ⟨nt⟩. Because of strong discretization effects, the probability distribu-
tions, and consequently the effective transfer matrix elements, split into three fami-
lies [6]. Despite different nature, after the smoothing procedure, the effective action
for small volumes is basically the same as for large volumes, with a small modifi-
cation in the potential [5]. It might be interpreted as possible curvature corrections,
however, we are not able to measure it accurately in a discretization independent
way.
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