
Analytical Conformal Compactification of
Schwarzschild Spacetime
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Abstract We discuss a construction of the coordinates simultaneously covering the
complete Schwarzschild manifold as well as its conformal extension beyond I ±.
We provide an example of such coordinates and show they are analytical both at
horizon and at null infinity. We also show, that having such analytical compactifica-
tion can improve convergence in certain numerical applications.

The Penrose–Carter diagrams became a standard way to visualize various as-
pects of geometrical objects and physical processes in black-hole spacetimes. The
most widely used prescription to compactify the Schwarzschild coordinates comes
from the textbook [1]. It is known it depicts the regions near infinity dissimilarly to
those of compactified Minkowski spacetime and thus more recent textbooks present
modified transformations from Kruskal to compactified coordinates [2, 3]. Unfor-
tunately, even these transformations do not provide analytical coordinates at null
infinites I ±.

Spacetimes which at distant regions resemble the Minkowski spacetime form a
class of asymptotically flat spacetimes (AFS) [4, 5]. For such spacetimes coordinates
and appropriate conformal factor Ω exist that make the conformally related metric

d̃s2 = Ω 2 ds 2 (1)

regular at null infinity, where the conformal factor must vanish at infinity and the
leading terms of its expansion near J are prescribed

Ω(J ±) = 0, ∇̃µ Ω(J ±) ̸= 0, (2)

Ω(i0) = 0, ∇̃µ Ω(i0) = 0, ∇̃µ ∇̃ν Ω(i0) = 2g̃µν(i0). (3)
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We construct an explicit transformation and a conformal factor satisfying these
conditions for the Schwarzschild spacetime with

ds2 =−
(

1− 2M
r

)
dt2 +

dr2

1− 2M
r

+ r2dω2. (4)

We generalize the coordinates smoothly covering I ± given in [4] in the form of a
direct transformation between Schwarzschild coordinates t,r and the compactified
null coordinates u,v

f (r(u,v)) = h(v)+h(−u), (5)
t(u,v) = h(v)−h(−u). (6)

Here f (r) = r+2M ln[r/(2M)−1] denotes Regge–Wheeler tortoise coordinate. We
put the horizon at u = 0 and v = 0, the past null infinity I − at u =−π/2, and I +

at v = π/2. If the function h is written as a combination of two analytic functions
h(z) = α(z)+2M lnβ (z), then using the usual conformal factor Ω ∼ cosucosv we
can show, that the conformally related metric (1) obtained by such transformation is
analytic both at the horizon and at I ± if certain behavior of the functions α and β
at z = 0 and z =±π/2 is satisfied.

A careful analysis shows that the function

h(x) =
M

cosx
+2M ln

1− cosx
sinx cosx

(7)

leads to the transformation (5-6) which provides analytic coverage of all regions
of Kruskal’s complete manifold as well as of the regions beyond null infinites of
the conformally related manifold. The compactified line element (1) can be then
simplified into

d̃s2 =

1− 2M
r(u,v)

4M2 sinusinv
dudv+Ω 2 r(u,v)2dω2, (8)

where we have absorbed the derivatives of h into the conformal factor

Ω(u,v) =
cosucosv

4M2
√
(1+ cosu)2 −2cos3 u

√
(1+ cosv)2 −2cos3 v

. (9)

Please note, that no factors similar to exp(−r/2M) which in Kruskal’s coordinates
spoil the behavior at null infinities appear in (8).

In Fig. 1 we illustrate the way the coordinates t and r cover the Penrose–Carter
diagram of compactified Schwarzschild spacetime, namely we can see how these
coordinates behave near spatial infinity i0, the way the singularity r = 0 and event
horizon r = 2M meet at future time-like infinity i+ and that a region of negative
r appears behind I ±. The fact that the conformal metric is an analytical function
of compactified coordinates has to be be proven from mathematical properties of
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functions which appear in (5)-(9) – the most complicated is the proof of analyticity
at I ±, where we have to use either the implicit function theorem or theorem on
properties of solution of ordinary differential equations.

i
0

i
0

r
=

0
r
=

0

r
=

0

r = 0

r = 0

t=const.

r
=
c
o
n
s
t.

i
+i

+

i
−i

−

U−V

2

U+V

2

r
=

0

I
+

I −

Fig. 1 The Carter-Penrose diagram of the Schwarzschild spacetime covering its analytical exten-
sion beyond I ±.

To stress the importance of analytic coordinates we compare the coordinates (5-
6) with those suggested in [2] in a simple test. We assume a situation when a problem
is formulated as a differential equation which is numerically solved on the com-
pactified Schwarzschild spacetime. Coefficients in this equation reflect the curved
geometry of the spacetime and typically contain function 1/r = Ω g̃−1/2

θθ . This func-
tion inherits analytical properties of g̃µν and Ω . In this test we consider a slice (of
hyperboloidal type) which spans from the horizon to the null infinity with parameter
s ∈ [0,1] determining coordinates u =−sπ/4,v = (1+ s)π/4.

In Fig. 2 (left) we plot function 1/r(s) along the slice. Indeed, we cannot distin-
guish which function behaves better. We also decompose both functions into Cheby-
shev series and in Fig. 2 (right) plot absolute values of the coefficients showing
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that for analytic compactification the coefficients decay much faster (exponentially).
Since typically numerical methods of solution of differential equations work better
when coefficients in the differential equation are analytical functions, it seems that
even for problems which happen entirely in the physical domain of the Schwarz-
schild manifold the way the coordinates pierce through I ± matters.
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Fig. 2 When a space-like curve representing slice connecting middle of the horizon and I + in
Penrose–Carter diagram is linearly parametrized straight line with the parameter s ∈ (−1,1), func-
tion 1/r at Novikov’s-Frolov’s and analytical coordinates can be plotted as a function of this pa-
rameter s.

We found a new way of constructing analytical coordinates for AFS and showed
a related diagram for the Schwarzschild spacetime. The same method can be used
for other vacuum AFSs, i.e. Reissner–Nordström or extreme Reissner–Nordström.
We demonstrated advantages of using this coordinate system for numerical methods
in general relativity.
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