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Abstract I discuss various definitions of the flatness problem and previous claims
that it does not exist. I also present a new quantitative argument which shows that it
does not exist in cosmological models which collapse in the future.

1 Introduction

Questioning the existence of the flatness problem might seem to some like question-
ing the existence of the expansion of the universe. The flatness problem (e.g. [1])
and the fact that inflation can solve it (e.g. [2]) have become part of standard cosmol-
ogy, at least for many definitions of ‘standard’. How can something so fundamental
not exist? My own view is that the emphasis has been so much on the solution of
the flatness problem through inflation that the flatness problem itself has been rather
neglected and its existence just assumed without being investigated in detail.

2 Basic cosmology

I assume that, at the level of detail necessary, the universe can be described by the
Friedmann– Lemaı̂tre equation

Ṙ2 =
8πGρR2

3
+

ΛR2

3
− kc2 (1)

where the symbols have their usual meaning (e.g. [3]). It can be useful to express
Eq. (1) with the values of the dimensionless parameters as observed now, denoted
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by the suffix 0. This leads to

Ṙ2 = Ṙ2
0

(
Ω0R0

R
+

λ0R2

R2
0

−K0

)
. (2)

Note that, at any time,

R =
c
H

sign(K)√
|K|

. (3)

In general, H, λ and Ω all change with time. (See [4] for an excellent discussion of
the evolution of λ and Ω .) The change in λ with time is due entirely to the change
in H with time, since Λ is constant; the variation in Ω is due both to variation in
H and to the decrease in density as the universe expands. For the present discus-
sion, the basic information needed can be seen in Figure 1, referring at the moment
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Fig. 1 Evolutionary trajectories in the λ -Ω plane.

only to the thick lines and curves. The vertical line corresponds to λ = 0; the di-
agonal line corresponds to k = 0 with k = −1 below it and k = +1 above it. The
curve near the vertical line (corresponding to the A1 curve in [4]) separates models
which will collapse (to the left) from those which will expand forever (to the right).
Models on the curve start arbitrarily close to the Einstein– de Sitter model (like all
non-empty big-bang models) and asymptotically approach the static Einstein model
which has λ = Ω = ∞ (since H = 0; Λ and ρ have finite values). The other curve
(corresponding to the A2 curve in [4]) separates big-bang models (to the left) from
non–big-bang models (to the right); the latter contract from an infinite to a finite
size then expand forever. Models on the curve start at the static Einstein model and
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asymptotically approach the de Sitter model (the latter feature is shared with all
models which expand forever and have λ > 0). The thin curves show some sample
trajectories in the λ -Ω parameter space. (Note that all the thick lines, curves and
points of intersection in Figure 1 are also trajectories.) Also, note that the trajecto-
ries do not cross; this means that the history of a cosmological model (i.e. the way
λ and Ω change with time) is completely determined by the values at any point on
it (in practice, by measuring the values at the present time, λ0 and Ω0).

3 A very brief history of the flatness problem

The flatness problem appears in two forms. One states that if Ω ≈ 1 today, then in the
early universe it was arbitrarily close to 1; the assumption is that some ‘mechanism’
is needed to explain this ‘fine-tuning’ (e.g. [2]). (It is usually not stated but almost
always assumed that no fine-tuning would be necessary if Ω were not ≈ 1 today.)
The other states that if Ω changes with time, then we should be surprised that Ω
is (still) ≈ 1 today [5].1 Coles & Ellis [6] discuss three ‘solutions’ to the flatness
problem – Ω ≡ 1 (and λ ≡ 0), k = 0, anthropically selected special time – which,
however, are ultimately unsatisfactory. Are there any satisfactory ones?

The flatness problem is often presented as a fine-tuning problem (e.g. [2]): if Ω
is near 1 to day, then at some time tfine in the past it must have been 1 to a very
high accuracy. I refer to this sense of the flatness problem as the ‘qualitative flatness
problem’. This argument is completely bogus, as has been pointed out by many
authors [6, 5]: all non-empty models begin their evolution at the Einstein– de Sitter
model, so of course the further back in time one goes, the ‘more finely tuned’ Ω
is. The point is, within the context of classical cosmology, there is nothing special
about a time tfine chosen so that Ω is very close to 1 at that point.

Evrard & Coles [7] (see also Coles & Ellis [6]) also point out that the assump-
tion implicit in the qualitative flatness problem, namely that some wide range of Ω
values are a priori equally likely at some early time, constitutes a prior which is
incompatible with the assumption of minimal information. This can be regarded as
a quantitative solution to the qualitative flatness problem (or, perhaps, an argument
against its existence).

The qualitative flatness problem thus does not exist; it is merely a consequence
of the way in which a universe, described by the Friedmann– Lemaı̂tre equation,
evolves and how dimensionless observable quantities such as Ω are defined. Never-
theless, even if it is not a puzzle why Ω = 1 at early times, one can still ask whether
we should be surprised that Ω ≈ 1 today. The rest of this article is concerned mainly

1 Historically, the flatness problem was first discussed during a time when λ was thought to be zero.
If λ is not constrained to be zero, then the flatness problem should be re-phrased as the Einstein–
de Sitter problem, i.e. the question is why the universe is (in some sense) close to the Einstein–
de Sitter model (which is an unstable fixed point and a repulsor) today when |λ | and Ω can take
on values between 0 and ∞. However, for brevity I will continue to use the term ‘flatness problem’
even for the more general case and sometimes mention only the change in Ω with time.
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with the second form: should we be surprised that Ω ≈ 1 today? This ‘quantitative
flatness problem’ is more subtle, but also has solutions within the context of classi-
cal cosmology.

4 Cosmological models which collapse in the future

All cosmological models (assumed to be expanding now) with λ < 0 will collapse
in the future: R̈ is negative for all values of R and for large R is proportional to R.
Models with λ = 0 will collapse for Ω > 1. In addition, models with λ > 0 will
collapse provided that Ω > 1 (which in this case implies K > 0, i.e. k =+1), q > 0
and α < 1, where

α = sign(K)
27Ω 2λ

4K3 (4)

[4, 5]. (The A1 and A2 curves mentioned above have α = 1.) In Figure 1, these are
in the area between λ = 0 and the A1 curve. Empty big-bang models start arbitrarily
close to the Milne model with (λ ,Ω ) values of (0,0); non-empty big-bang models
start arbitrarily close to the Einstein– de Sitter model with (λ ,Ω ) values of (0,1).
The evolution of λ and Ω can be viewed as trajectories in the parameter space: λ
and Ω evolve from the starting point to infinity and return along the same trajectory.
(For the definitive discussion, see [4]; a very useful visualization can be found at
[8].) The interesting question with regard to the flatness problem is the amount of
time spent in various parts of parameter space. To quantify this, I have calculated
the quotient of the age of the universe now and at the time of maximum expansion
as a function of λ and Ω . The age of the universe is given by

t =

R(t)∫
0

dR√
Ṙ2

0

(
Ω0R0

R + λ0R2

R2
0
−K0

) (5)

which follows from Eq. (2). For the current age, the upper limit is given by Eq. (3);
at the time of maximum expansion it is found by calculating the (smallest) zero of
Ṙ2 (since Ṙ2 cannot be negative). This is shown in Figure 2. It is clear that large
values of λ and Ω occur only during a relatively short time in the history of the
universe, near the time of maximum expansion (at the precise time of maximum
expansion, λ and Ω are infinite since H = 0). Note that this argument is completely
independent of H0.
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Fig. 2 The age of the universe as a fraction of the time between the big bang and maximum
expansion. Contours, from right to left, are at 0.5, 0.6, 0.7, 0.8 and 0.9.

5 Cosmological models which expand forever

Lake [5] has presented a solution which solves the flatness problem as well for
models with k = +1 which will expand forever. (For non-collapsing models, large
values of λ and Ω are possible only for k =+1.) Trajectories in the λ -Ω plane have
a constant of motion given by Eq. (4). It seems natural to distinguish cosmological
models on the basis of their value of α . Large values of λ and Ω are possible only
for α ≲ 1. This is shown in Figure 3. (Note that, for clarity, only Ω > 1 is shown!)
It is obvious that α ≤ 1 is a necessary condition for having infinitely large values of
λ or Ω . Already for α = 2 the maximum value of λ is just 2 (for Ω = 2) and the
maximum value of Ω is ≈ 3.5 (for λ = 1.25).

In this case, the fine-tuning argument is reversed; only in the case of fine-tuning
do λ and Ω become arbitrarily large. This demonstrates quantitatively that there
is no quantitative flatness problem regarding arbitrarily large values of λ or Ω for
models which expand forever. This argument is also independent of the value of H0.
However, all non-empty models which expand forever asymptotically approach the
de Sitter model at (λ ,Ω) = (1,0). Thus, one final aspect of the quantitative flatness
problem remains: Ω can become arbitrarily small. This is investigated in the next
section.
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Fig. 3 The constant of motion α (see Eq. (4)). From upper left to lower left, contours are at 0.1,
0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100.

6 Cosmological models which expand forever

I have now covered the entire λ -Ω parameter space except for big-bang models with
(a) q < 0 (which implies λ > 0) and (b) Ω less than ≈ 2 (all three values of k are
possible) and shown that in all cases there is no flatness problem. What about this
remaining portion of parameter space? Models here all have K ≈ 0 and approach
the de Sitter model asymptotically. This means that there is no flatness problem in
the restricted sense, as pointed out by Lake [5]. However, Ω becomes arbitrarily
small (and λ arbitrarily close to 1). Thus, there is still a problem in that we do not
observe such values, even though they exist for almost the entire (infinite) lifetime
of the universe. This is essentially the question ‘if the universe lasts forever, then
why are we near the beginning?’ Note that this question could be asked at any time.
One could leave it at that and say that since any finite age is arbitrarily close to the
beginning, there is nothing special about our time and thus no flatness problem in
the time-scale sense (i.e. the quantitative flatness problem, why is Ω not arbitrarily
small today). This is discussed in more detail in [9].

7 Summary

The qualitative flatness problem, i.e. the puzzle why the universe was arbitrarily
close to the Einstein– de Sitter model (or, for an empty universe, the Milne or de Sit-
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ter model) at early times, does not exist. It is merely a consequence of the way λ
and Ω are defined. Neither does the quantitative flatness problem exist: although the
cosmological parameters in general evolve with time, it is not puzzling that we don’t
observe extreme values for them today. In the case of models which will collapse
in the future this is because large (absolute) values of λ and Ω occur only during
a relatively short time in the lifetime of such a universe, namely near the time of
maximum expansion. λ and Ω can become large only when H becomes small, and
this happens only during the time when the universe is at or near its maximum size.
(Arbitrarily small (absolute) values, if they occur at all, also occur for only a rela-
tively short time.) For models which will expand forever, large values are possible
only for k = +1. However, this occurs only for α ≈ 1. In this case, the fine-tuning
argument is reversed; only in the case of fine-tuning do λ and Ω become arbitrarily
large. Since all models which will expand forever asymptotically approach Ω = 0,
arbitrarily small values of Ω can occur. Those with λ = 0 (and hence k = −1) ap-
proach the Milne model with Ω = 0; models with λ > 0, whatever the value of k,
approach the de Sitter model with λ = 1 (the Milne and de Sitter models themselves
are of course stationary points). (If λ = 0 at any time then λ = 0 at all times. Oth-
erwise, arbitrarily small values of λ , if they occur at all, occur only for a relatively
short time.) However, if H0 has a value similar to or smaller than the observed value,
small values of Ω will occur only in the far future when anthropic arguments prob-
ably make the observation of such a low value of Ω unlikely. While (for λ > 0) a
higher value of H0 would allow a low value of Ω even for an age near the observed
age, such a universe would have spent only a very short time during which Ω was
not very small, so structure formation would have been strongly suppressed.
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