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Abstract We examine an Unruh-DeWitt particle detector coupled to a scalar field
in three-dimensional curved spacetime, within first-order perturbation theory. We
first obtain a causal and manifestly regular expression for the instantaneous tran-
sition rate in an arbitrary Hadamard state. We then specialise to the Bañados-
Teitelboim-Zanelli black hole and to a massless conformally coupled field in the
Hartle-Hawking vacuum. A co-rotating detector responds thermally in the expected
local Hawking temperature, while a freely-falling detector shows no evidence of
thermality in regimes that we are able to probe, not even far from the horizon. The
boundary condition at the asymptotically anti-de Sitter infinity has a significant ef-
fect on the transition rate.

1 Introduction

Whenever non-inertial observers or curved backgrounds are present in quantum field
theory, the notions of vacuum state and particle number become non-unique. For
this reason it proves convenient to define particles operationally; that is to say, we
couple the field to a simple quantum mechanical system that we think of as our
detector and define particles via the field’s interaction with the energy levels of this
system. Upwards (respectively downwards) transitions can be interpreted as due to
absorption (emission) of field quanta, or particles. This is the Unruh-DeWitt model
for a particle detector [1, 2].
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In this contribution we address a pointlike Unruh-DeWitt detector coupled to a
scalar field in three-dimensional spacetime, within first-order perturbation theory.
We first find the detector’s instantaneous transition rate in an arbitrary Hadamard
state. We then specialise to a massless conformally coupled field on the Bañdados-
Teitelboim-Zanelli (BTZ) black hole, in the Hartle-Hawking vacuum, analysing the
thermal response seen by a co-rotating detector and the time evolution of the re-
sponse of a freely-falling detector. A longer exposition of the results can be found
in [3].

2 Transition rate in (2+1) dimensions

With the Unruh-DeWitt detector, the fundamental quantity of interest is the proba-
bility of a transition between the energy eigenstates. In the framework of first order
perturbation theory the probability for a transition of energy E is proportional to the
response function,

F (E) = 2 lim
ε→0+

ℜ
∫ ∞

−∞
du χ(u)

∫ ∞

0
ds χ(u− s)e−iEs Wε(u,u− s) , (1)

where χ is a smooth switching function that turns on (off) the detector’s interaction
with the field and Wε(u,u− s) is a one-parameter family of functions that converge
to the pull-back of the Wightman distribution to the detector’s wordline [4, 5, 6, 7].
A related quantity of interest is the transition rate, which can be defined as the
derivative of the transition probability with respect to the total detection time. One
must take great care when obtaining the transition rate from the response function [8,
9, 10, 11]. We will adopt the approach developed in [12, 7, 13] of taking a controlled
sharp switching limit.

In three-dimensional spacetime, the Wightman distribution W (x,x′) of a real
scalar field in a Hadamard state can be represented by the ε → 0+ limit of a family
of functions with the short distance form [14]

Wε(x,x
′) =

1
4π

[
U(x,x′)√
σε(x,x′)

+
H(x,x′)√

2

]
, (2)

where ε is a positive parameter, σ(x,x′) is the squared geodesic distance between x
and x′, σε(x,x

′) := σ(x,x′)+2iε [T (x)−T (x′)]+ ε2 and T is any globally-defined
future-increasing C∞ function. The branch of the square root is such that the ε → 0+
limit of the square root is positive when σ(x,x′) > 0 [14, 6]. Here U(x,x′) and
H(x,x′) are symmetric biscalars which have expansions governed by certain recur-
sion relations [14], and they are regular in the coincidence limit.

Given (2), the detector’s instantaneous transition rate can be shown to take the
form [3]
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Ḟτ (E) =
1
4
+2

∫ τ−τ0

0
ds ℜ

[
e−iEs W0(τ,τ − s)

]
, (3)

where τ0 is the proper time at which the detector was switched on, τ is the proper
time at which the instantaneous transition rate is read off, and the function W0 is the
pointwise ε → 0+ limit of Wε . We are assuming that any singularities that W (x,x′)
may have at σ(x,x′) ̸= 0, not captured by the asymptotic expansion (2), are so mild
that taking the pointwise limit is valid. Such singularities will in particular occur in
the BTZ spacetime below.

3 Detector in the BTZ spacetime

We now specialise to a detector in the BTZ black hole spacetime [15, 16, 17]. This
spacetime can be obtained by periodically identifying AdS3, and in coordinates
adapted to the global isometries the metric takes the form

ds2 =−(N⊥)2dt2 + f−2dr2 + r2 (dϕ +Nϕ dt
)2

, (4)

where N⊥ = f =
(
−M+ r2

ℓ2 +
J2

4r2

)1/2
, Nϕ = − J

2r2 , ℓ is a positive parameter that
sets the AdS3 curvature scale, ϕ has period 2π , and a non-extremal black hole is ob-
tained when the mass parameter M and the angular momentum parameter J satisfy
|J|< Mℓ. The spacetime has many similarities with the Kerr black hole, but its null
infinities are asymptotically AdS, as opposed to asymptotically flat. The conformal
diagram of the J = 0 case is shown in Figure 1. The importance of this asymptotic
structure for us is that the spacetime is not globally hyperbolic, and to build a sen-
sible quantum field theory one must impose boundary conditions at the infinity. We
shall see that the detector response turns out to be highly sensitive to these boundary
conditions.

Fig. 1 Conformal diagram for
the J = 0 BTZ black hole. The
Killing horizon of the Killing
vector ∂t is at r = r+, where
r+ =

√
M ℓ.

We consider a massless, conformally coupled field. We first introduce on the
covering space AdS3 the three AdS-invariant states whose Wightman functions are
given by [17]
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G(ζ )
A (x,x′) =

1
4π

 1√
∆X2(x,x′)

− ζ√
∆X2(x,x′)+4ℓ2

 , (5)

where ∆X2(x,x′) is the squared geodesic distance between x and x′ in the flat R2,2 in
which AdS3 can be embedded as a submanifold, the parameter ζ ∈ {0,1,−1} spec-
ifies whether the boundary condition at infinity is respectively transparent, Dirichlet
or Neumann, and we have suppressed the iε that controls the short distance form (2).
The Wightman function in the induced state on the BTZ spacetime is then given by
the image sum [17]

GBTZ(x,x
′) = ∑n GA(x,Λ nx′) , (6)

where Λx′ denotes the action on x′ of the isometry (t,r,ϕ) 7→ (t,r,ϕ + 2π), and
the notation suppresses the distinction between points on AdS3 and points on the
quotient spacetime. The scalar field is assumed untwisted so that no additional phase
factors appear in (6).

The detector’s transition rate is obtained by substituting (6) into (3). In sections
4 and 5 we discuss the transition rate for selected detector trajectories.

4 Co-rotating detector in BTZ

As the first example we consider a detector that is in the exterior region of the
BTZ black hole, at constant value of r and co-rotating with the horizon angular
velocity ΩH . In the special case J = 0, we have ΩH = 0 and the detector is static.
Unlike in Kerr, these detector trajectories exist at arbitrarily large values of r: this is
a consequence of the AdS asymptotics.

As the detector is stationary, we take the switch-on to be in the asymptotic
past. The Wightman function turns out to contain singularities between timelike-
separated points on the detector’s trajectory, but the consequent singularities in the
transition rate formula (3) are integrable and the transition rate remains well defined.
Further, contour manipulations allow the transition rate to be cast in a manifestly
nonsingular form that is amenable to analytic techniques, including asymptotic anal-
yses in a number of asymptotic regimes, as well as to numerical evaluation. We can
in particular verify analytically that the transition rate satisfies

Ḟ (E) = e−E/TlocḞ (−E), (7)

where Tloc is the co-rotating Hawking temperature at the detector’s location [17]. (As
the transition rate is stationary, we have dropped the subscript τ .) The transition rate
is hence thermal in the local Hawking temperature in the sense of the Kubo-Martin-
Schwinger (KMS) property [18, 19], as expected from the general properties of the
Hartle-Hawking vacuum [20, 21].

The boundary condition at the infinity is found to have a significant effect on
the quantitative properties of the transition rate. The special case of a spinless black
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hole, with a detector at large and small distances from the hole, is illustrated in
Figure 2.

ζ = 0 ζ =−1 ζ = 1

Fig. 2 Ḟ for a co-rotating detector, as a function of the detector’s energy gap E divided by the
local Hawking temperature T , for a large non-spinning hole, with the detector near the hole (solid)
and far from hole (dotted). Note the significant differences between the three boundary conditions.
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Fig. 3 The transition rate of a detector on a radial geodesic in the spinless BTZ spacetime, assum-
ing that the mass is large and that the switch-on and switch-off moments are not close to the white
hole and black hole singularities, with the transparent boundary condition at the infinity. The hor-
izontal axes are the detector’s energy gap E and the total detection time ∆τ := τ − τ0, normalised
by the AdS scale ℓ. Note the dominance of the de-excitation rate (E < 0) over the excitation rate
(E > 0) after the transient switch-on effects have died out.
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5 Inertial detector in BTZ

As the second example we consider a detector on a geodesic that falls radially into
the spinless black hole. This trajectory is not stationary and the transition rate de-
pends on both the switch-on moment and the switch-off moment. Furthermore the
switch-on moment cannot be pushed to the infinite past because the trajectory starts
at the white hole singularity at a finite proper time.

We have found no parameter ranges where the transition rate would be thermal
in the sense of the KMS property (7). One situation where approximate thermal-
ity might have been expected is near the turning point of a trajectory far from the
horizon. However, in this case the transition rate just reduces to that of a geodesic
detector in AdS3, which can be verified not to satisfy the KMS property. These ob-
servations are compatible with embedding space arguments which suggest that a
detector in AdS3 should respond thermally only when its proper acceleration ex-
ceeds 1/ℓ [22, 23, 24, 25].

We were however able to analyse the transition rate by a combination of asymp-
totic methods and numerical methods. Figure 3 shows a plot of the transition rate
when the black hole is large and the switch-on and switch-off moments are not
close to the white hole and black hole singularities, with the transparent boundary
condition at the infinity.

6 Concluding remarks

That the response of a co-rotating detector in the BTZ spacetime is thermal in the co-
rotating Hawking temperature was to be expected from the general properties of the
Hartle-Hawking vacuum [20, 21]. Our formalism allowed us to analyse this thermal
response quantitatively, by a combination of analytic and numerical techniques. We
found in particular that the response depends strongly on the choice of the boundary
condition at the infinity. We also showed perturbatively that the response loses its
thermal character when the detector’s angular velocity differs from that of the black
hole.

For a detector falling radially into a spinless BTZ hole, we found no parameter
space regions where the transition rate would exhibit thermality. The transition rate
is again affected by the choice of the boundary condition at the infinity, but this
effect appears to be subdominant to those caused by the switching and the motion.

It would be interesting to compare our results for the transition rate in the BTZ
spacetime to that in Schwarzschild spacetime. For example, one may expect an in-
ertial detector in Schwarzschild to respond to the Hartle-Hawking vacuum approxi-
mately thermally in the asymptotically flat region, owing to the asymptotic flatness
of Schwarzschild. We leave these questions subject to future work.
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