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Abstract Using the Multipolar post-Minskowskian formalism, we compute the lin-
ear momentum flux from black-hole binaries in circular orbits and having no spins.
The total linear momentum flux contains various types of instantaneous (which are
functions of the retarded time) and hereditary (which depend on the dynamics of
the binary in the past) terms both of which are analytically computed. In addition to
the inspiral contribution, we use a simple model of plunge to compute the kick or
recoil accumulated during this phase.

1 Introduction

In classical radiation theory, any form of radiation that has a preferred direction
(anisotropic emission) results in the recoil of the system in the opposite direction.
Such a recoil has important consequences in astrophysics like the pulsar accelera-
tion due to the radiation asymmetry [1]. This effect can be understood in terms of
multipole moments of the system, more specifically interference between different
multipoles [2]. It was argued in Ref. [2], on general grounds, that the leading recoil
effect in the case of electromagnetic radiation could come from the interference be-
tween electric dipole and electric quadrupole or magnetic dipole (See Ref. [3] for a
more detailed discussion). A similar effect can happen in the case of gravitational
radiation [2]. Since the leading emission in the case of Gravitational Waves (GWs)
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in GR is quadrupolar, the lowest order recoil effect in GR arises from the interfer-
ence of mass quadrupole and mass octupole or current quadrupole.1 This GW recoil
can be seen as a consequence of linear momentum flux emission by the radiating
system.

Let us now focus on a particular type of GW source known as coalescing compact
binaries (CCBs). As the name indicates, these are systems consisting of neutron stars
(NS) or black holes (BH) which go around each other in a bound orbit. The orbit
keeps on shrinking due to gravitational radiation reaction until the two objects merge
to form a compact object, most likely a BH. As is well known, the GW emission
is not isotropic (due to the quadrupolar nature) and thus the emission is beamed in
some direction. As the two bodies move in their respective orbits, this direction also
keeps changing. If the orbit is closed, then over an orbit, the binary’s centre of mass
would return to the same point where it started, making the net recoil zero. However,
if the orbit is not closed, as is the case for CCBs, there can be an accumulation of
recoil over these orbits until the two bodies coalesce into a single BH, eventually
manifesting as a kick to this newly formed BH. This is the GW recoil in the context
of CCBs.

Gravitational recoil has important implications for astrophysics, especially mod-
els of black hole formation and growth (see e.g. [4]). If the recoil velocity of a
merging compact binary system is greater than the escape velocity of the galaxy, it
can result in the ejection of the newly formed black hole from the galaxy. Hence
very accurate estimation of the recoil velocity of the merging compact binaries is
important to understand the astrophysics of black hole formation and growth.

Evolution of CCBs can be divided into three phases: adiabatic inspiral, nonlin-
ear merger and perturbative ringdown. The inspiral part and ringdown phases can
be accurately modelled analytically using post-Newtonian (PN) approximation to
general relativity [5] and BH perturbation theory [6], respectively. Due to recent
successes in numerical relativity (see Refs. [7, 8] for reviews), the highly nonlinear
merger phase can be modelled quite accurately by numerically solving Einstein’s
equations.

In this work, we use the PN approximation to calculate the linear momentum
loss and resulting GW recoil from a black-hole binary2 moving in circular orbits
up to 2.5PN order extending the earlier works of Fittchett (Newtonian order) [9],
Wiseman (1PN order [10]) and Blanchet et al. (through 2PN [11]). A more detailed
account of the contents of this paper can be found in Ref. [12].

This article is organized in the following way. In Sec. 2, we write down the
multipolar expansion of the linear momentum flux and the final expression for the
flux in terms of source multipole moments. Section 3 derives the 2.5PN expression
for the recoil and Sec. 4 discusses the numerical estimates of recoil. Conclusions
are given in Sec. 5.

1 Both mass octupole and current quadrupole have the same parity.
2 Note that the expressions for the linear momentum flux (Eq. (2)) and that for the recoil velocity
(Eq. (7)) are even applicable to compact binary systems involving NSs as components. However,
the plunge computations presented here assume that both the components of the binary are BHs.
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2 Multipole Expansion for Linear momentum flux

The general formula for linear momentum flux in the far-zone of the source in terms
of symmetric trace-free (STF) radiative multipole moments is given in [13] and at
relative 2.5PN order it takes the following form (see e.g. Eq. (4.20’) of Ref. [13].)
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In the equation above UL and VL denote the mass and current type radiative mul-
tipoles of the source (suffix L captures the multi-index structure of the U and V mo-
ments) and U (n)

L and V (n)
L denote the nth time derivatives of the moments. O(1/c6)

denotes the omission of terms higher than 3PN w.r.t the leading term. The moments
which appear in the above formula are functions of retarded time T − R

c , where R
denotes the distance of the source relative to the observer and T the time of obser-
vation, both in radiative coordinates. In the MPM formalism UL and VL are related
to canonical moments ML and SL (Eqs. (5.4)-(5.8) of [14]) which in turn are related
to source moments {IL,JL,XL,WL,YL,ZL} (Eqs. (5.9)-(5.11) of [14]). Using these
inputs, one can re-express the radiative multipole moments in terms of source mo-
ments. Then one notices that the total linear momentum flux consists of two parts:
one type of terms are functions of the retarded time called instantaneous terms and
the other which are sensitive to the dynamics of the source in its entire past are
called hereditary terms. Explicit expressions for the two types of terms are given
in Eqs. (2.3)-(2.5) of Ref. [12]. Further, the explicit expressions for various source
multipole moments are given in Eqs. (3.1)-(3.4) of Ref. [12]. The only other input
we require is the 2.5PN accurate equations of motion which can be found in [14, 15].
Using these inputs, and working in harmonic coordinates, we obtain the total linear
momentum flux in terms of gauge independent variable x = (mω)2/3 as
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In the equation above n̂ and λ̂λλ are related to the phase angle ψ as
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n̂ = cosψ êx + sinψ êy , (3)

λ̂λλ =−sinψ êx + cosψ êy . (4)

3 Computation of the Recoil

Having computed the linear momentum flux for compact binaries in circular orbits,
one can obtain the recoil velocity by integrating the momentum balance equation

dPi

dt
=−F i

P (5)

to get

∆Pi =−
∫ t

−∞
dt ′F i

P . (6)

Performing the integration we find,
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4 Numerical estimates of the recoil velocity including plunge
contribution

As is evident from Eq. (7), the recoil velocity depends on the (symmetric) mass ratio
ν and does not depend on the total mass. This is consistent with our understanding
that the origin of the recoil is in the mass asymmetry. We finally want to numerically
estimate the recoil velocities as a function of ν . Our calculation based on 2.5PN
approximation yields a maximum kick velocity of ∼ 4km/sec as opposed to ∼ 22
km/sec of the 2PN model given in Ref. [11]. Thus 2.5PN estimates predict a smaller
kick velocity than the 2PN model. This result is obtained by integrating the linear
momentum flux till the Innermost Stable Circular Orbit (ISCO), up till which PN
approximation is considered to be valid.

Since the dominant contribution to the recoil comes towards the late stages of
the binary evolution, we incorporate the contribution from the ‘plunge’ phase of the



2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case 5

0 0.05 0.1 0.15 0.2 0.25 0.3

ν

0

50

100

150

180

200

243

|V
k
ic

k
|(

in
 k

m
-s

-1
)

BQW05(2PN)

Present Work (2.5PN)

Fig. 1 Kick velocity imparted to the remnant of the compact binary coalescence as a function of
symmetric mass ratio. This figure incorporates the contribution from the plunge phase of the binary
evolution. The results of 2.5PN+plunge is compared against that of Ref. [11] where the estimation
was done with a 2PN+plunge model.

evolution beyond the last stable orbit, following and extending a model proposed
in Ref. [11]. The method may be considered to be less sophisticated version of the
Effective One Body approach [16, 17]. In this model, the plunge can be viewed as
that of a test particle moving in the fixed Schwarzshild geometry of mass m. The
contribution from the plunge phase is estimated using the PN formulae assuming
they are valid even beyond ISCO. Since the PN representation is usually not reliable
inside ISCO, this should be a source of error and in general this computation is only
a crude estimate. Further, the recoil velocity accumulated during the two phases (in-
spiral and the plunge) can be obtained by taking a vector sum of the two estimates.
This is achieved by matching the circular orbit at the ISCO to a suitable plunge orbit.
The final results of the numerical estimates of the recoil velocity are presented in
Fig 1. We compare the recoil velocity based on our 2.5PN inspiral + plunge model
with that of 2PN inspiral + plunge model of Ref. [11]. (Specifications are the same
as those of Fig. 1 of [11].) As is evident, our 2.5PN inspiral + plunge model predicts
smaller recoil velocity for almost all values of ν . The maximum of the curve drops
from ∼ 243 km/s of [11] to ∼ 180 km/s. This may be attributed to the oscillatory
convergence of the PN series observed in various contexts (see e.g. [18]). While our
estimates are within the error bars given by [11], one should keep in mind that there
are also error bars associated with our estimates due to systematic effects such as
the omission of higher order PN contributions.
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5 Conclusion

Using the MPM formalism, we computed the linear momentum flux due to GW
emission from inspiralling compact binaries moving in circular orbit up to 2.5PN
order. This complements the computations of energy flux [19], waveform and polar-
izations [20, 21] at 2.5PN order for circular orbits. Using the PN linear momentum
flux and an analytical model of plunge [11], we have estimated the contributions to
the recoil from the inspiral and plunge phase, as a function of symmetric mass ratio.
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4. D. Merritt, M. Milosavljević, M. Favata, S.A. Hughes, D.E. Holz, Consequences of Gravita-
tional Radiation Recoil, Astrophys. J. Lett. 607, L9 (2004)

5. L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling com-
pact binaries, Living Rev. Relativity 5, lrr-2002-3 (2002). URL http://www.
livingreviews.org/lrr-2002-3

6. M. Sasaki, H. Tagoshi, Analytic black hole perturbation approach to gravitational radiation,
Living Rev. Relativity 6, lrr-2003-6 (2003). URL http://www.livingreviews.org/
lrr-2003-6

7. F. Pretorius, Binary Black Hole Coalescence, in Physics of Relativistic Objects in Compact
Binaries: From Birth to Coalescense, Astrophysics and Space Science Library, vol. 359, ed.
by M. Colpi, et al. (Springer/Canopus Publishing Limited, Dordrecht; Bristol, 2009), pp. 305–
370

8. J. Centrella, J.G. Baker, B.J. Kelly, J.R. van Meter, Black-hole binaries, gravitational waves,
and numerical relativity, Reviews of Modern Physics 82, 3069 (2010)

9. M.J. Fitchett, The influence of gravitational wave momentum losses on the centre of mass
motion of a Newtonian binary system, Mon. Not. R. Astron. Soc. 203, 1049 (1983)

10. A.G. Wiseman, Coalescing binary systems of compact objects to (post)5/2 Newtonian order.
2. Higher order wave forms and radiation recoil, Phys. Rev. D 46, 1517 (1992)

11. L. Blanchet, M.S.S. Qusailah, C.M. Will, Gravitational Recoil of Inspiraling Black Hole Bi-
naries to Second Post-Newtonian Order, Astrophys. J. 635, 508 (2005)

12. C.K. Mishra, K.G. Arun, B.R. Iyer, 2.5PN linear momentum flux from inspiralling compact
binaries in quasicircular orbits and associated recoil: Nonspinning case, Phys. rev. D 85(4),
044021 (2012)

13. K.S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299 (1980)
14. L. Blanchet, G. Faye, B.R. Iyer, S. Sinha, The third post-Newtonian gravitational wave po-

larizations and associated spherical harmonic modes for inspiralling compact binaries in
quasi-circular orbits, Class. Quantum Grav. 25(16), 165003 (2008)

15. L.E. Kidder, Using full information when computing modes of post-Newtonian waveforms
from inspiralling compact binaries in circular orbit, Phys. Rev. D 77, 044016 (2008)

16. A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dy-
namics, Phys. Rev. D 59, 084006 (1999)

17. A. Buonanno, T. Damour, Transition from inspiral to plunge in binary black hole coales-
cences, Phys. Rev. D 62, 064015 (2000)

http://dx.doi.org/10.1086/153907
http://dx.doi.org/10.1103/PhysRev.128.2471
http://dx.doi.org/10.1086/421551
http://www.livingreviews.org/lrr-2002-3
http://www.livingreviews.org/lrr-2002-3
http://www.livingreviews.org/lrr-2003-6
http://www.livingreviews.org/lrr-2003-6
http://dx.doi.org/10.1103/RevModPhys.82.3069
http://dx.doi.org/10.1103/PhysRevD.46.1517
http://dx.doi.org/10.1086/497332
http://dx.doi.org/10.1103/PhysRevD.85.044021
http://dx.doi.org/10.1103/PhysRevD.85.044021
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1103/PhysRevD.77.044016
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1103/PhysRevD.62.064015


2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case 7

18. T. Damour, B.R. Iyer, B.S. Sathyaprakash, Comparison of search templates for gravitational
waves from binary inspiral, Phys Rev. D 63(4), 044023 (2001). Erratum-ibid. D 72 (2005)
029902

19. L. Blanchet, Energy losses by gravitational radiation in inspiraling compact binaries to 5/2
post-Newtonian order, Phys Rev. D 54, 1417 (1996). Erratum-ibid.71, 129904(E) (2005)

20. K.G. Arun, L. Blanchet, B.R. Iyer, M.S.S. Qusailah, The 2.5PN gravitational wave polariza-
tions from inspiralling compact binaries in circular orbits, Class. Quantum Grav. 21, 3771
(2004). Erratum-ibid. 22, 3115 (2005)

21. L.E. Kidder, L. Blanchet, B.R. Iyer, A note on the radiation reaction in the 2.5PN waveform
from inspiralling binaries in quasi-circular orbits, Class. Quantum Grav. 24, 5307 (2007)

http://dx.doi.org/10.1103/PhysRevD.63.044023
http://dx.doi.org/10.1103/PhysRevD.54.1417
http://dx.doi.org/10.1088/0264-9381/21/15/010
http://dx.doi.org/10.1088/0264-9381/24/20/N01

	2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case
	Chandra K. Mishra, K. G. Arun, and Bala R. Iyer

