
Effective Vacuum Bianchi IX in Loop Quantum
Cosmology

Alejandro Corichi, Asieh Karami, and Edison Montoya

Abstract In classical general relativity, the chaotic behavior of the Bianchi IX
model can be useful to describe the generic local evolution near a singularity. How-
ever, one expects that quantum effects can modify it. In this contribution we show
that the modifications which come from Loop Quantum Cosmology imply a non-
chaotic effective behavior.

1 Introduction

Bianchi models are spatially homogeneous models such that the symmetry group S
acts simply and transitively on a space manifold Σ ∼= S . The symmetry group for
Bianchi IX model is generated by three spatial rotations on a 3-sphere. We identify
this group with SU(2) to define fiducial frames and co-frames. The fiducial cell is a
3-sphere with radius ao (=2) and its volume is Vo = 2π2a3

o. We define ℓo =V 1/3
o and

ϑ = ℓo/ao = (2π2)1/3. In terms of the phase space variables used in loop quantum
gravity (LQG) [1, 2, 3], a connection Ai

a and a densitized triad Ea
i , the classical

constraint is

CH =
∫

V
N

[
−

Ea
i Eb

j

16πGγ2
√

|q|
ε i j

k

(
Fk

ab − (1+ γ2)Ω k
ab

)
+Hmatter

]
d3x , (1)

where N is the lapse function, Hmatter = ρV and Ωab is the curvature of the
spin connection Γ i

a which is compatible with the triads. In what follows, we take
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N = 1 and since we work in vacuum, ρ is equal to zero. If we restrict ourselves
to diagonal Bianchi IX model, we can parametrize Ai

a and Ea
i as Ai

a = cioω i
a/ℓo

and Ea
i = pi

√oq oea
i /ℓ

2
o, the pi’s in terms of scale factors ai are |pi| = ℓ2

oa jak,
and the volume is V =

√
|p1 p2 p3|. The nonzero Poisson brackets are given by

{ci, p j}= 8πGγδi j, where γ is the Barbero-Immirzi parameter.
To quantize the Hamiltonian constraint in Eq. (1), we find an operator corre-

sponding to Fab and we express the connection Ai
a in terms of holonomies [4]. The

operators associated to the connection are then given by ĉi = ̂sin µ̄ici/µ̄i, where
µ̄i = λ

√
pi/p j pk, i ̸= j ̸= k and λ 2 = 4

√
3πγ l2

p is the smallest eigenvalue of area in
LQG.
For the term which contains the inverse of the metric determinant, and for those
which contain the negative powers of pi’s, we use the Thiemann strategy [3]. The
idea is to find some classical equivalent expression for them in terms of holonomies
and positive powers of p’s and then quantize this expression. For instance, to quan-
tize a negative power of pi we know that, classically, there is the following identity

|pi|(ℓ−1)/2 =−
√
|pi|

4πGγµiℓ j( j+1)
τih

(µi)
i {h(µi)−1

i , |pi|ℓ/2} , (2)

where µ is the length of a curve which is used for calculating the holonomy, ℓ is
a number between 0 and 1 and j ∈ 1

2N labels the representation. For simplicity we
take j = 1/2 and choose µi = µ̄iℓo because they appear in the terms corresponding
to curvature. Since the largest negative power of p’s which appears in the constraint
is −1/4 we will take ℓ = 1/2 to obtain it directly from the above equation. After
that, we express the other negative powers by it. The eigenvalues for the operator
̂|pi|−1/4 are

Ji =
h(V )

Vc
∏
j ̸=i

p1/4
j , where h(V ) =

√
V +Vc −

√
|V −Vc|,Vc = 2πγλℓ2

p.

The correction term which comes from the ε i j
k Ea

i Eb
j /
√
|q| is A(V ) = (V +Vc−|V −

Vc|)/2Vc. Hence, with these definitions one obtains the corresponding constraint
operator.

In this work, we are interested in studying the classical effective Hamiltonian
which has some modifications from the quantum theory to gain qualitative insights
into the leading order quantum effects. Since the Hamiltonian is invariant under
parity, we restrict ourselves to positive pi’s. The effective Hamiltonian which is
derived from the quantum theory is
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Heff =− V 4A(V )h6(V )

8πGV 6
c γ2λ 2

(
sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3

+ sin µ̄2c2 sin µ̄3c3

)
+

ϑA(V )h4(V )

4πGV 4
c γ2λ

(
p2

1 p2
2 sin µ̄3c3 + p2

2 p2
3 sin µ̄1c1

+ p2
1 p2

3 sin µ̄2c2

)
− ϑ 2(1+ γ2)A(V )h4(V )

8πGV 4
c γ2

(
2V

[
p2

1 + p2
2 + p2

3

]
−
[
(p1 p2)

4 +(p1 p3)
4 +(p2 p3)

4
]

h6(V )

V 6
c

)

2 The Effective Potential

It is helpful to use the potential term of the constraint to study the solutions. The
classical potential which comes from the spin connection’s curvature in the classical
constraint, in terms of Misner variables is [5]

W =
1
2

e−4Ω
(

e−4β+ −4e−β+ cosh
√

3β−+2e−2β+ [cosh2
√

3β−−1]
)
, (3)

where Ω =− 1
3 logV and the anisotropies β± are defined via a1 = e−Ω+(β++

√
3β−)/2,

a2 = e−Ω+(β+−
√

3β−)/2 and a3 = e−Ω−β+ . Since the Ω dependence factorizes, one
can obtain an anisotropy potential V (β+,β−) which exhibits exponential walls for
large anisotropies. The universe can be seen as a particle moving in such a poten-
tial (W ) that presents reflections at the walls. An infinite number of these reflec-
tions implies that the system behaves chaotically. When the volume becomes small,
the quantum effects become important and one should work with the full quantum
theory, but one can use the effective equations to have a qualitative view of what
happens near the classical singularity. From the effective Hamiltonian, the modified
potential can be derived as a function of pi:

W =−V 2A(V )h4(V )

V 4
c

(
p2

1 + p2
2 + p2

3 −
[
(p1 p2)

4 +(p1 p3)
4 +(p2 p3)

4
]

h6(V )

2VV 6
c

)
.

For a simple case, when β− = 0 and β+ →−∞, the classical potential is W (β+,Ω)∼
1
2 e−4Ω−4β+ . If we rewrite the modified potential in terms of Misner variables we can
see that in this limit, the modified potential behaves as 1

2V 9
c

e−52Ω−4β+ where the β+-
dependency of both classical and modified potential are the same, so we have an
infinite wall for the modified potential too, (see Fig. 1, left). Note however that, for
small volumes, the modified potential can be negative at some points.
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3 Density

In the general case, as can be seen in Fig. 1 (right), the maximum allowed density
(which arises from the modified Hamiltonian by choosing the sine functions equal
to −1), has two distinct disconnected regions with positive values. Therefore, if we
impose the weak energy condition and start the evolution within one region, the uni-
verse cannot reach the other region. To study the vacuum Bianchi IX, we start from
large volumes which lie in region B of Fig. 1 (right) and, as we go to smaller vol-
umes, we cannot reach zero volume because ‘crossing’ to region A is not allowed.
Therefore, there is a smallest reachable volume in region B and, since very large
anisotropies are not allowed near this smallest volume, and the modified potential
is not too large there, then we have, at most, finite oscillations before reaching the
bounce. On the other hand, in the internal region A, the anisotropies are very large
when some of the pi are very small, and then the volume of the universe cannot be
large enough to start the evolution from there.

Fig. 1 Left: modified potential when β− = 0. Right: zero surfaces of the maximum allowed den-
sity; density in regions A and B can be non-negative but in region C it is always negative; both in
Planck units.

4 Conclusions

We have studied the behavior of a modified potential for the Bianchi IX model
when quantum effects become important. We showed that the potential wall does
not disappear and we have potential chaotic behavior near the classical singularity.
However, if the weak energy condition holds and if we start from large volumes and
evolve the equations into small volumes, there will be a lower bound for volume
within region B, and one does not reach region A (connected to zero volume). Since
there are no large anisotropies near the smallest allowed volume, the solutions will
not exhibit chaotic behavior.
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