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Abstract Averaging problem in GR and cosmology is of fundamental importance.
It is still not clear how to unambiguously average Einstein equations and the metric
tensor. One of the most promising attempts how to deal with averaging in GR are
the Buchert equations. However, only scalar part of the Einstein equations is aver-
aged and the system is not closed. Here we will present LRS (locally rotationally
symmetric) spacetimes, where one can find preferred spatial direction and the evo-
lution and the constraint equations are described only by scalars. By averaging these
scalars we will obtain generalized Buchert equations (for LRS spacetimes).

1 Introduction

The averaging problem in general relativity was studied by Ellis [1] and has been
investigated many times since then. However despite some attempts [2] it is not
obvious how to take an average of a tensorial quantity. On the other hand averaging
of scalars according to Buchert [3] is a fully covariant operation, but it has some
drawbacks as well. It is performed over some domain on a spatial hypersurface and
it depends on the slicing of the spacetime and of course on the scale.

The key problem in cosmology is that calculating the Einstein tensor from the
averaged metric is not the same thing as calculating the Einstein tensor from inho-
mogeneous metric and taking the average after that

Gµν
(⟨

gµν
⟩)

̸=
⟨
Gµν

(
gµν

)⟩
. (1)

This property follows from the nonlinearity of Einstein equations.
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2 Buchert equations

Averaging of scalars was derived by Buchert [3]. The average of a scalar ψ over a
domain D on a spatial hypersurface is defined as

⟨ψ⟩ ≡ 1
VD

∫
D

ψ
√

detgi j d3x, (2)

where VD is volume of the domain D . Taking the average of the Raychaudhuri
equation and the Hamiltonian constraint leads to Buchert equations

3
äD

aD
=−4π ⟨ρ⟩+Q, (3)

3
˙aD

2

a2
D

= 8π ⟨ρ⟩− 1
2
⟨R⟩− 1

2
Q. (4)

Here ρ is the matter density, R is the Ricci scalar on the spatial hypersurface
and aD is the effective scale factor of the domain D . The quantity Q in Buchert
equations (3) - (4) is called the backreaction and is defined as

Q ≡ 2
3

(⟨
θ 2⟩−⟨θ⟩2

)
−2

⟨
σ2⟩ . (5)

3 LRS spacetime

Locally rotationally symmetric (LRS) spacetimes are defined by the following char-
acterization [4]: In an open neighborhood of each point p, there is a nondiscrete
subgroup of the Lorentz group which leaves the Riemann tensor and its covariant
derivatives to the third order invariant. There is therefore in LRS spacetimes a pre-
ferred direction eµ (the axis of symmetry) in every point.

We will use the covariant 3+1 splitting of a spacetime with the timelike vector uµ

normalized by the condition uρ uρ =−1 and the projection tensor hµν = gµν +uµ uν .
Because of the property of the LRS spacetime, all covariantly defined spacelike vec-
tors orthogonal to uµ must be proportional to eµ [5].

u̇µ = u̇eµ , ωµ = ωeµ , hσ
µ ∇σ ρ = ρ ′eµ , hσ

µ ∇σ p = p′eµ , hσ
µ ∇σ θ = θ ′eµ

Dot here denotes the covariant derivative along the flow vector uµ and the prime
denotes covariant derivative along the vector eµ . With the help of the tensor
eµν = 1

3 (3eµ eν − hµν), we have the relations for the shear tensor and the electric
and magnetic parts of the Weyl tensor
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σµν =
2√
3

σeµν , Eµν =
2√
3

Eeµν , Hµν =
2√
3

Heµν . (6)

We will now define the magnitude of the spatial rotation k and the magnitude of
the spatial divergence a,

k ≡
∣∣∣ηαβγδ (∇β eγ

)
uδ

∣∣∣ , a ≡ hα
β

(
∇α eβ

)
. (7)

4 Averaging LRS spacetime

For simplicity we will restrict to the class II LRS spacetime with the condition p= 0
(dust models) which includes LTB spacetimes and their generalizations to spacelike
2-surfaces with negative or zero curvature scalar. Given a preferred spacelike direc-
tion, all the equations describing LRS metric are scalar. It means we can perform
averaging (which is covariantly defined for scalars). In order to obtain averaged
equations we need to derive the commutation relations for the prime (and the time)
derivative (with respect to the preferred direction) and averaging,

⟨A⟩′D = e

 1
VD

∫
D

d3x
√

detgi jA

=−⟨ξ ⟩D ⟨A⟩D + ⟨Aξ ⟩D +
⟨
A′⟩

D
, (8)

where ξ is defined by the relation
(√

detgi j
)′
=

√
detgi jξ . Similarly we get the

commutation rule for the time derivative. Averaged equations for the dust class II
LRS spacetime read

⟨θ⟩· =− 1
3
⟨θ⟩2 −4π ⟨ρ⟩+ 2

3

(⟨
θ 2⟩−⟨θ⟩2

)
−2

⟨
σ2⟩

⟨σ⟩· =− 1√
3
⟨σ⟩2 − 2

3
⟨θ⟩⟨σ⟩−⟨E⟩+ 1√

3

(
⟨σ⟩2 −

⟨
σ2⟩)+ 1

3
(⟨θσ⟩−⟨θ⟩⟨σ⟩)

⟨E⟩· =−4π ⟨ρ⟩⟨σ⟩+
√

3⟨E⟩⟨σ⟩−⟨θ⟩⟨E⟩−4π (⟨ρσ⟩−⟨ρ⟩⟨σ⟩)

+
√

3(⟨Eσ⟩−⟨E⟩⟨σ⟩)
⟨ρ⟩· =−⟨ρ⟩⟨θ⟩

⟨a⟩· =− 1
3
⟨a⟩⟨θ⟩+ 1√

3
⟨a⟩⟨σ⟩+ 2

3
(⟨aθ⟩−⟨a⟩⟨θ⟩)+ 1√

3
(⟨aσ⟩−⟨a⟩⟨σ⟩)

⟨σ⟩′ = 1√
3
⟨θ⟩′− 2

3
⟨a⟩⟨σ⟩+ ⟨σξ ⟩−⟨ξ ⟩⟨σ⟩− 1√

3
(⟨ξ θ⟩−⟨ξ ⟩⟨θ⟩)

−3
2
(⟨aσ⟩−⟨a⟩⟨σ⟩)
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⟨E⟩′ =− 2
3
⟨a⟩⟨E⟩+ 4π√

3
⟨ρ⟩′− 2

3
(⟨aE⟩−⟨a⟩⟨E⟩)

+⟨ξ E⟩−⟨ξ ⟩⟨E⟩− 4π√
3
(⟨ξ ρ⟩−⟨ξ ⟩⟨ρ⟩)

⟨a⟩′ =2
9
⟨θ⟩2 +

2
3
√

3
⟨θ⟩⟨σ⟩− 4

3
⟨σ⟩2 − 2√

3
⟨E⟩− 1

2
⟨a⟩2 − 16π

3
⟨ρ⟩

+⟨aξ ⟩−⟨a⟩⟨ξ ⟩+ 2
9

(⟨
θ 2⟩−⟨θ⟩2

)
+

2
3
√

3
(⟨θσ⟩−⟨θ⟩⟨σ⟩)

−4
3

(⟨
σ2⟩−⟨σ⟩2

)
− 1

2

(⟨
a2⟩−⟨a⟩2

)
(9)

The underlined part of the equations denotes the additional terms created by av-
eraging. We can recognize the familiar Buchert equation with the kinematical back-
reaction term and the mass conservation equation.

5 Conclusion

We have shown how to generalize the Buchert equations for the LRS spacetimes.
Averaged Einstein equations consist of evolution equations and constraints that are
preserved in time.
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