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Abstract After a brief review of the standard definition and analysis of classi-
cal singularities in general relativistic spacetimes, and of quantum singularities in
static spacetimes with timelike classical singularities, an extension of quantum sin-
gularities to conformally static spacetimes is summarized and applied to two test
cases. The timelike classical singularities in a Friedmann-Robertson-Walker (FRW)
universe with a cosmic string, and in Roberts spacetime, are shown to be quan-
tum mechanically singular when tested by either minimally coupled or conformally
coupled scalar waves. In the Roberts case, however, non-minimally coupled scalar
waves with a coupling constant ξ ≥ 2 do not detect the classical singularity.

1 Introduction

We study quantum wave packet propagation in conformally static spacetimes with
timelike classical singularities. If the wave propagation turns out to be well defined,
the spacetimes are said to be quantum mechanically non-singular.

The order of the paper is as follows: First, classical and quantum singularities
are defined with the latter restricted (as usual) to static spacetimes with timelike
singularities. Next, the definition of quantum singularity is extended to conformally
static spacetimes with a timelike singularity (spacelike singularities, if present, are
not tested). In particular, two spacetimes are tested with generally coupled scalar
waves: a Friedmann-Robertson-Walker (FRW) spacetime with a cosmic string and
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the Roberts spacetime. Finally, conclusions are given, together with ideas for further
research.

2 Classical singularities

A spacetime (M,g) is taken to be a paracompact, C∞, connected, Hausdorff mani-
fold M with a Lorentzian metric g [1]. So what is a classical singularity? A space-
time is by definition smooth, so ‘singular’ points are not part of the spacetime;
they must be cut out of the spacetime manifold. This leaves a ‘hole’, with incom-
plete curves, a seeming boundary to spacetime. How do we complete spacetime,
and how do we define a boundary ∂M to spacetime? There have been a number
of attempts, none of them entirely satisfactory. Note that Cauchy completeness
works only in Riemannian metrics, not Lorentzian. Boundary definitions have in-
cluded the a(abstract)-boundary of Scott and Szekeres [2], the b(bundle)-boundary
of Schmidt [3], the c(causal)- boundary of Geroch, Kronheimer, and Penrose [4]
and the g(geodesic)-boundary of Geroch [5]. In this discussion we will use Geroch’s
1968 description of a classical singularity. He states that “a singularity is indicated
by incomplete geodesics or incomplete curves of bounded acceleration in a maxi-
mal spacetime.” This is closest to the definition of classical singularity used in the
famous singularity theorems of Hawking and Penrose, which predict that singulari-
ties are ubiquitous in exact solutions of Einstein’s equations (see, e.g., [6])).

Ellis and Schmidt have classified singular points into three types according to
their strength [1]: quasi-regular (mild, topological singularities), non-scalar curva-
ture (diverging tidal forces on curves ending at the singularity; finite tidal forces on
some nearby curves) and scalar curvature (diverging scalars – usually one considers
only C0 scalar polynomial invariants). Conical singularities, as in idealized cosmic
strings, are a good example of quasiregular singularities. The other two types of
singularities are stronger, curvature singularities. Nonscalar curvature singularities
include those in whimper cosmologies and certain plane-wave spacetimes, whereas
scalar curvature singularities are the best-known, occurring at the centers of black
holes or the beginning of big bang cosmologies.

2.1 Quantum Singularities

What happens if instead of classical particle paths (e.g., null and timelike geodesics)
one uses quantum mechanical particles (quantum wave packets) to identify singu-
larities? Following pioneering work by Wald [7], Horowitz and Marolf answered
this question for static spacetimes with timelike classical singularities. In their 1995
paper they posit that a spacetime is quantum mechanically (QM) nonsingular if the
evolution of a test scalar wave packet, representing a quantum particle, is uniquely
determined by the initial wave packet, the manifold and the metric, without hav-
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ing to place boundary conditions at the classical singularity. Technically, a static
spacetime is QM-singular if the spatial portion of the Klein-Gordon operator is not
essentially self-adjoint on C∞

o (Σ) in the space of square integrable functions L2(Σ),
where Σ is a spatial hypersurface.

The term “essentially self adjoint” arises in functional analysis [8]. An operator
A is called self-adjoint if (i) A = A∗ and (ii) Dom(A) = Dom(A∗), where A∗ is the
adjoint of A and Dom is short for domain. An operator is essentially self-adjoint if
(i) is met and (ii) can be met by expanding the domain of the operator A or its adjoint
A∗ so that it is true.

There are two basic tests for essential self-adjointness [8]. The first uses the von
Neumann criterion of deficiency indices [9]; one studies solutions of AΨ = ±iΨ ,
where A is the spatial portion of the Klein-Gordon operator, and finds the number of
solutions for each sign that are self-adjoint. The second technique uses the so-called
Weyl limit point - limit circle criterion [10], which relates essential self-adjointness
of the Hamiltonian operator to the behavior of the “potential” in an effective one-
dimensional Schrödinger equation, which in turn determines the behavior of the
scalar wave packet. Relevant theorems that simplify the analysis can be found in
Reed and Simon [8].

Many authors have used the definition of quantum singularity to study the singu-
larity structure of spacetimes. For a summary, see, for example, the review article
by Pitelli and Letelier [11] or the conference proceeding by the authors [12] and the
references therein. Also, there is the alternative concept of ‘wave regularity’ intro-
duced by Ishibashi and Hosoya [13], which is relevant to the discussion. It uses a
non-standard Hilbert space, H1, the first Sobolev space.

3 Conformally Static Spacetimes

A spacetime gµν(xα) that is conformally static is related to a static spacetime
ḡµν(xa) by a conformal transformation C(η) of the metric. Here C(η) is the con-
formal factor, where η is the conformal time, related to the time t by dt = Cdη .
Simply put, gµν(xα) = C2(η)ḡµν(xa). Here Greek letters α,β , ... label spacetime
indices and have the range over 0, 1, 2, 3, and Latin letters a,b,c, ... label spatial
indicies that range over 1, 2, 3.

The Lagrangian density for a generally coupled scalar field is [14],

L = 1/2(−g)1/2[gµν Φ ,µ Φ ,ν −(M2 +ξ R)Φ2], (1)

where M is the mass if the scalar particle, R is the scalar curvature, and ξ is the
coupling (in particular, ξ = 0 for minimal coupling and ξ = 1/6 for conformal
coupling). Varying the action S =

∫
L d4x gives the Klein-Gordon field equation,

|g|−1/2
(
|g|1/2gµν Φ ,ν

)
,µ −ξ RΦ = M2Φ . (2)

.
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In the massless case with conformal coupling, the field equation above is confor-
mally invariant under a conformal transformation of the metric and field; in this
case the inner product respecting the stress tensor for the field is also conformally
invariant. This led Ishibashi and Hosoya to state [13], in the case of wave regular-
ity, that “the calculation is as simple as that in the static case when singularities in
conformally static space-times are probed with conformally coupled scalar fields.”

Here we study the quantum particle propagation in spacetimes with massive
scalar particles described by the Klein-Gordon equation and the limit point - limit
circle criterion of Weyl [10] [8]. In particular, after separating variables we study
the radial equation in a one-dimensional Schrödinger form with a ‘potential’ and
determine the number of solutions that are square integrable. If we obtain a unique
solution, without placing boundary conditions at the location of the classical sin-
gularity, we can say that the solution to the full Klein-Gordon equation is quantum
mechanically (QM) nonsingular. The results depend on the spacetime metric param-
eters and wave equation modes.

After separating variables we take the spatial portion to be an operator equation
on a Hilbert space L2(Σ) with inner product (see, e.g., [15]),

(χ,ζ ) =
∫

d3x|ḡ3/g00|1/2χ(xa)ζ (xb), (3)

where ḡ3 is the determinant of the spatial portion of the static metric, χ and ζ are
spatial mode solutions and a,b range over 1, 2, 3. Then we consider the radial
portion alone, change variables and write the radial equation in one-dimensional
Schrodinger form, Hu(x) = Eu(x), where the operator H = −d2/dx2 +V (x) and
E is a constant, with the singularity at x = 0. The inner product here is simply∫

dx|u(x)|2 and the Hilbert space is L2(0,∞). At this point one can simply apply the
limit point - limit circle criterion as easily as in the static case in order to determine
the quantum singularity structure.

3.1 FRW with a Cosmic String

A simple metric modeling a Friedmann-Robertson-Walker cosmology with a cosmic
string [16] is given by

ds2 = a2(t)(−dt2 +dr2 +β 2r2dϕ 2 +dz2) (4)

where β = 1 − 4µ and µ is the mass per unit length of the cosmic string. This
metric is conformally static (actually conformally flat). Classically it has a scalar
curvature singularity when a(t) is zero and a quasiregular singularity when β 2 ̸= 1.
Here we will consider the timelike quasiregular singularity alone. The Klein-Gordon
equation with general coupling can be separated into mode solutions

Φ = T (t)H(r)eimϕ eikz (5)
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where

T̈ +2
(

ȧ
a

)
Ṫ +(M2a2 +ξ Ra2 −q)T = 0 (6)

and

H ′′+
1
r

H ′+(−k2 −q− m2

β 2r2 )H = 0. (7)

The T -equation alone contains M and R. Rewriting the dependent and independent
variables as r = x and H = xu(x), we get the correct inner product form and a one-
dimensional Schrödinger equation,

u′′+(E −V (x))u = 0 (8)

where E =−k2 −q and

V (x) =
m2 −β 2/4

β 2x2 . (9)

.
Near zero one can show that the potential V (x) is limit point if m2/β 2 ≥ 1. Therefore
any modes with sufficiently large m are limit point, but m = 0 is limit circle; thus
generically this conformally static space-time is quantum mechanically singular.

3.2 Roberts Spacetime

The Roberts metric [17] is

ds2 = e2t(−dt2 +dr2 +G2(r)dΩ 2) (10)

where G2(r) = (1/4)[1+ p− (1− p)e−2r](e2r − 1). The spacetime is conformally
static, spherically symmetric, and self-similar (see, e.g., [13]). It has a timelike clas-
sical scalar curvature singularity at r = 0 for 0 < p < 1. The Klein-Gordon equa-
tion can be solved by separation of variables with mode solutions given by Φ =
T (t)H(r)Ylm(θ ,ϕ). The radial operator can be put in one-dimensional Schrödinger
form and the limit point - limit circle criterion applied. Details are given in [18].
One finds that the spacetime is quantum mechanically singular if ξ < 2 and quan-
tum mechanically non-singular if ξ ≥ 2. Therefore, the classical timelike singularity
remains singular when probed by minimally coupled (ξ = 0) waves or by confor-
mally coupled (ξ = 1/6) waves.
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4 Conclusions

After a brief review of the standard definition and analysis of classical singularities
in general relativistic spacetimes, and of quantum singularities in static spacetimes
with timelike classical singularities, an extension of quantum singularites to confor-
mally static spacetimes was summarized and applied to two test cases. The timelike
classical singularities in a FRW universe with a cosmic string and in Roberts space-
time were shown to be quantum mechanically singular when tested by either mini-
mally coupled or conformally coupled scalar waves. In the Roberts case, however,
non-minimally coupled scalar waves with a coupling constant ξ ≥ 2 did not detect
the classical singularity.

Further analysis of the singularity structure of conformally static spacetimes is
underway [18]. A class of spherically symmetric conformally static spacetimes is
being analyzed; this class includes the spacetimes of HMN[19] and Fonarev[20], as
well as the Roberts spacetime.
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