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Abstract In any approach to quantum gravity, it is crucial to look for observational
effects in order to discriminate between different approaches. Here, we discuss how
quantum-gravitational contributions to the anisotropy spectrum of the cosmic mi-
crowave background arise in the framework of canonical quantum gravity using the
Wheeler–DeWitt equation. From the present non-observation of these contributions,
we find a constraint on the Hubble parameter of inflation.

1 Introduction

One of today’s most significant tasks in theoretical physics is to find the correct
quantum theory of gravity. We have several approaches to such a theory at hand;
however, there has not yet been a definite prediction which is testable with today’s
level of precision by experiment or observation. The reason for this is that quantum
effects of gravity should only become sizable in situations where large curvature and
very high energies approaching the Planck scale are involved. This effectively makes
black hole physics and very early universe cosmology the two main applications for
a theory of quantum gravity.

Here, we want to focus on cosmology, and in particular on the Cosmic Mi-
crowave Background (CMB), which has opened a new era of precision cosmol-
ogy ever since its anisotropies have been detected. The power spectrum of these
anisotropies has turned out to be a rich source of information about the very
early universe and it is therefore a very suitable candidate to look for quantum-
gravitational effects.

We have chosen to use quantum geometrodynamics as our framework, a direct
canonical quantization of gravity. It is unlikely that quantum geometrodynamics
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turns out to be the ultimate answer to the problem of quantum gravity; however, it
should be able to be used at least as an effective theory, since it leads to Einstein’s
equations in the semiclassical limit, see e.g. [1].

Our aim is to calculate the dominant quantum-gravitational contribution for the
primordial power spectrum of cosmological perturbations, which arises from a semi-
classical approximation to the Wheeler–DeWitt equation of quantum cosmology.

This conference contribution is based on our papers [2] and [3].

2 The quantum-cosmological model

In order to give a first estimate of how sizable quantum gravity effects for the CMB
can be, we choose the simplest model, an inflationary universe with perturbations of
only the scalar field ϕ , which plays the role of the inflaton. The background universe
is a flat Friedmann–Lemaı̂tre universe with a scale factor a ≡ exp(α). Furthermore,
we assume that the slow-roll approximation holds in the form of ϕ̇ 2 ≪ |V (ϕ)|,
where V (ϕ) is the inflaton potential, which we choose to be V (ϕ) = 1

2 m2ϕ 2 ≈
const. for definiteness.

After setting h̄ = c = 1, redefining the Planck mass as mP =
√

3π/2G ≈ 2.65×
1019 GeV and rescaling the scalar field ϕ → ϕ/

√
2π , one arrives at the following

Wheeler–DeWitt equation in minisuperspace:

H0Ψ0(α,ϕ)≡ e−3α

2

[
1

m2
P

∂ 2

∂α2 − ∂ 2

∂ϕ 2 + e6α m2ϕ 2
]
Ψ0(α ,ϕ) = 0 . (1)

Furthermore, we make the assumption that the kinetic term of the ϕ -field can be
neglected, as it is small compared to the potential term ∂ 2Ψ0/∂ϕ 2 ≪ e6α m2ϕ 2Ψ0.
This allows us to substitute mϕ by mPH, where H denotes the quasi-static Hubble
parameter during inflation, and our Wheeler–DeWitt equation for the background
becomes

H0Ψ0(α)≡ e−3α

2

[
1

m2
P

∂ 2

∂α2 + e6α m2
PH2

]
Ψ0(α) = 0 . (2)

We include inhomogeneities by adding perturbations to the homogeneous back-
ground inflaton field ϕ → ϕ(t)+δϕ(x, t) and decompose them into Fourier modes,
where we assume for simplicity that the space is compact and the spectrum for the
wave vector k, k ≡ |k|, discrete: δϕ(x, t) = ∑k fk(t)eik·x. Note that we use units in
which k is a dimensionless quantity. For each of the modes we have a Hamiltonian

Hk =
1
2

e−3α
[
− ∂ 2

∂ f 2
k
+
(

k2e4α +m2e6α
)

f 2
k

]
,

such that the Wheeler–DeWitt equation that includes the scalar field inhomo-
geneities reads [4]
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H0 +

∞

∑
k=1

Hk

]
Ψ
(
α,{ fk}

∞

k=1

)
= 0 .

Due to the smallness of the fluctuations, one can neglect self-interactions of the
respective modes and therefore make a product ansatz for the full wave func-
tion including the fluctuation modes: Ψ

(
α ,{ fk}

∞

k=1

)
=Ψ0(α)∏∞

k=1Ψ̃k(α, fk). This
ansatz allows us to write out a Wheeler–DeWitt equation for each fluctuation mode
Ψk(α , fk) :=Ψ0(α)Ψ̃k(α, fk), which takes the form:

1
2

e−3α
[

1
m2

P

∂ 2

∂α2 + e6α m2
PH2 − ∂ 2

∂ f 2
k
+Wk(α) f 2

k

]
Ψk(α , fk) = 0 ,

where we have defined Wk(α) := k2e4α +m2e6α .

3 The semiclassical approximation

We are interested in finding quantum-gravitational correction terms to the standard
expressions used to calculate the power spectrum of quantum fluctuations in an
inflationary universe. Hence, it suffices to solve the Wheeler–DeWitt equation (3)
by performing a Born–Oppenheimer type of approximation, as it was presented for
the full Wheeler–DeWitt equation in [5]. The Born–Oppenheimer approximation is
widely used in molecular physics, where one can separate the degrees of freedom
of the molecules into slow ones (the nuclei) and fast ones (the electrons). In our
quantum-cosmological setting, the slow variable is the scale factor, while the fast
ones are the fluctuations fk.

We implement the Born–Oppenheimer approximation by making the ansatz
Ψk(α , fk) = eiS(α , fk) and expanding S in terms of powers of m2

P: S(α, fk) = m2
P S0 +

m0
P S1 +m−2

P S2 + . . .. Inserting this ansatz into equation (3) and comparing terms of
equal power of mP, one obtains that at order O(m2

P) S0 obeys the classical Hamilton–
Jacobi equation [

∂S0

∂α

]2

− e6α H2 = 0 , (3)

which describes the classical minisuperspace background on which the quantum
fluctuations propagate. At the next order O(m0

P), we define ψ(0)
k (α, fk)≡ γ(α)eiS1(α, fk)

and impose a condition in order to make γ(α) equal to the standard WKB prefactor.
At this point, we can introduce a time parameter t that arises from the approximate
background defined by the Hamilton–Jacobi equation (3), using the definition

∂
∂ t

:=−e−3α ∂S0

∂α
∂

∂α
. (4)

This limit can be compared with the limit of geometric optics that arises from wave
optics. In that case, light rays result as an approximate concept from the eikonal
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equation. In our case, an approximate spacetime emerges, and one has an approxi-
mate time t at one’s disposal.

Consequently, we find that each ψ(0)
k (α , fk) obeys a Schrödinger equation with

respect to t: i ∂
∂ t ψ(0)

k = Hkψ(0)
k .

Hence, the order O(m0
P) corresponds to the limit of quantum theory in an external

background. It is at this order where we will obtain the standard results for quantum
fluctuations in an inflationary universe.

But before that, we will take the semiclassical approximation one step fur-
ther, to the order O(m−2

P ), where we use a decomposition of S2(α, fk) as fol-
lows: S2(α , fk) ≡ ς(α) + η(α , fk). After demanding that ς(α) be the standard
second-order WKB correction, we find that the wave functions ψ(1)

k (α, fk) :=

ψ(0)
k (α, fk)eim−2

P η(α, fk) obey a quantum-gravitationally corrected Schrödinger equa-
tion of the form

i
∂
∂ t

ψ(1)
k = Hkψ(1)

k − e3α

2m2
Pψ(0)

k

[(
Hk

)2

V
ψ(0)

k + i
∂
∂ t

(
Hk

V

)
ψ(0)

k

]
ψ(1)

k , (5)

where V := e6α H2. The first term in this equation gives the dominant contribution,
while the second one corresponds to a small violation of unitarity with respect to
the standard inner L 2-product for the modes fk. Since it is usually negligible with
respect to the first term, we will neglect the unitarity-violation term in the following.

4 Calculation of the power spectrum

In order to calculate the power spectrum of the scalar field fluctuations, we have to
solve the uncorrected Schrödinger equation. We express α in terms of t and use the

Gaussian ansatz ψ(0)
k (t, fk) = N

(0)
k (t)e−

1
2 Ω (0)

k (t) f 2
k .

This leads to the following system of equations:

˙N
(0)

k (t) = − i
2

e−3α N
(0)

k (t)Ω (0)
k (t) , (6)

Ω̇ (0)
k (t) = i e−3α

[
−
(
Ω (0)

k (t)
)2

+Wk(t)
]
. (7)

Equation (7) has the following solution

Ω (0)
k (t) =

k2a2

k2 +H2a2 (k+ iHa)+O

(
m2

H2

)
, (8)

while (6) together with the normalization of the states yields the solution |N (0)
k (t)|2

= (ℜeΩ (0)
k (t)/π)1/2. In order to use equation (7) to calculate the power spectrum,
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we use the definition of the density contrast in the slow-roll regime given by

δk(t)≈
δρk(t)

V0
=

ϕ̇(t) σ̇k(t)
V0

.

Here, V0 represents the scalar-field potential evaluated at the background solution
ϕ(t), and σk(t) denotes the classical quantity related to the quantum-mechanical
variable fk(t). We implement this relation by taking the expectation value of fk with
respect to a Gaussian state:

σ2
k (t) :=

⟨
ψk| f 2

k |ψk
⟩
=

√
ℜeΩk

π

∞∫
−∞

f 2
k e−

1
2 [Ω

∗
k (t)+Ωk(t)] f 2

k d fk =
1

2ℜeΩk(t)
.

The density contrast is then evaluated at the time tenter, when the corresponding
mode re-enters the Hubble radius during the radiation-dominated phase. By using a
standard relation,

δk(tenter) =
4
3

V0

ϕ̇ 2
δk(texit) =

4
3

σ̇k(t)
ϕ̇(t)

∣∣∣∣∣
t= texit

,

we can relate tenter to the time texit, when the mode exits the Hubble radius during
the inflationary phase.

We therefore evaluate σ̇ (0)
k (t) at the Hubble-scale crossing texit. Using ξ (texit) =

2π , we arrive at
∣∣σ̇ (0)

k (t)
∣∣
t= texit

∝ H2 k−3/2. Since the power spectrum is defined

as ∆2
(0)(k) := 4πk3 |δk(tenter)|2 ∝ H4

∣∣ϕ̇(t)∣∣−2
texit

, we immediately see that we obtain a
scale-invariant power spectrum, which is the standard result for the simplest models
of inflation.

5 The quantum-gravitationally corrected power spectrum

In order to calculate the quantum-gravitational correction to the power spectrum
we determined above, we have to look for an approximate solution to equation (5),
where we ignore the unitarity-violating term as mentioned. We assume that we can
accommodate the correction by the following modified Gaussian ansatz

ψ(1)
k (t, fk) =

(
N

(0)
k (t)+

1
m2

P
N

(1)
k (t)

)
exp

[
− 1

2

(
Ω (0)

k (t)+
1

m2
P

Ω (1)
k (t)

)
f 2
k

]
.

Inserting this ansatz into equation (5) leads to the following equation for the correc-
tion term Ω (1)

k (t):
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Ω̇ (1)
k (t)≈−2ie−3α Ω (0)

k (t)
(

Ω (1)
k (t)− 3

4V (t)

[(
Ω (0)

k (t)
)2 −Wk(t)

])
. (9)

We assume that this correction vanishes for late times, Ω (1)
k (t)→ 0 as t → ∞, and

can then solve equation (9) by the method of variation of constants, which reduces
the problem to a numerical integration.

The relevant quantum-gravitationally corrected quantity for determining the
power spectrum is given by

∣∣σ̇ (1)
k (t)

∣∣= ∣∣∣∣∣ 1√
2

d
dt

[(
ℜeΩ (0)

k (ξ )+
1

m2
P

ℜeΩ (1)
k (ξ )

)− 1
2
]∣∣∣∣∣ (10)

and we can incorporate the quantum-gravitational correction into a correction term
Ck relating the uncorrected quantity σ̇ (0)

k to the corrected one σ̇ (1)
k in the following

way
∣∣σ̇ (1)

k

∣∣
texit

≃ |Ck|
∣∣σ̇ (0)

k

∣∣
texit

.

The correction term can then be numerically calculated

Ck :=
(

1−43.56
1
k3

H2

m2
P

)− 3
2
(

1−189.18
1
k3

H2

m2
P

)
, (11)

which allows us to immediately determine the quantum-gravitationally corrected
power spectrum ∆2

(1)(k) = ∆2
(0)(k)C2

k . Performing a Taylor expansion of Ck with
respect to (H/mP)

2 leads to

∆2
(1)(k)≃ ∆2

(0)(k)
[

1−123.83
1
k3

H2

m2
P
+

1
k6 O

(
H4

m4
P

)]2

.

We therefore see that the quantum-gravitational correction explicitly breaks the
scale independence of the uncorrected power spectrum and leads to a suppression
of power at large scales (small k). However, our approximation breaks down when
the zero point is approached and one would have to take into account higher orders
of (H/mP)

2 to suitably describe this limit.
From equation (12), one also sees that the quantum-gravitational effect only be-

comes significant if the inflationary Hubble parameter H approaches the Planck
scale. From the observational bound of the scalar-to-tensor ratio we can deduce an
upper bound on H, H ≲ 10−5mP ∼ 1014 GeV. Figure 1 shows the correction term
Ck for this value of H. The corrected power spectrum in this limiting case takes the
following form:

∆2
(1)(k)≃ ∆2

(0)(k)
[

1−1.76×10−9 1
k3 +

1
k6 O

(
10−15

)]2

.

We thus see that even in this limiting case the quantum-gravitational effect is ex-
tremely small and if one adds that at large scales measurement accuracy is fun-
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Fig. 1 The function Ck for H = 1014 GeV, from [3].

damentally limited by cosmic variance, we have to conclude that one will not be
able to see this effect even with future, more precise measurements of the CMB
anisotropies by satellite missions like PLANCK. A more elaborate discussion of the
observable bounds from this calculation can be found in [6].

However, one can use our analysis to derive an upper limit on the Hubble param-
eter independently of the observational bound based on the tensor-to-scalar ratio.
Given the fact that one has not yet unambiguously observed an effect as derived
here in the CMB anisotropy spectrum, one can assume for a rough estimate that C2

k
has to be not less than 0.95 for k ∼ 1 since one has observed that the power spec-
trum deviates by less than 5% from a scale-invariant spectrum [7]. In order to fulfill
this condition, one finds that H ≲ 1.4×10−2 mP ∼ 4×1017 GeV, which is, however,
weaker than the bound from the tensor-to-scalar ratio.

Other approaches to quantum gravity also lead to effects in the CMB anisotropy
spectrum. While non-commutative geometry and string theory give a similar sup-
pression of power on the largest scales [8, 9, 10], loop quantum cosmology predicts
an enhancement [11, 12].

6 Conclusion

We have seen that the Wheeler–DeWitt quantization of a model of an inflationary
universe with scalar field perturbations modifies the power spectrum of these per-
turbations. While the suppression of power at large scales is not observable due to
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cosmic variance, we can derive an upper bound on the Hubble parameter during
inflation, albeit weak. The comparison with other approaches to quantum gravity
showed that loop quantum cosmology leads to a qualitatively opposite effect. This
shows that looking for quantum-gravitational imprints in the cosmic microwave
background could help us to discriminate between different approaches to quan-
tum gravity.
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knowledges support from the Bonn–Cologne Graduate School of Physics and As-
tronomy.
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