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Abstract We present a regular cubic lattice solution to Einstein field equations that
is exact at second order in a small parameter. We show that this solution is kine-
matically equivalent to the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) solu-
tion with the same averaged energy density. This allows us to discuss the fitting
problem in that framework: are observables along the past lightcone of observers
equivalent to those in the analogue FLRW model obtained by smoothing spatially
the distribution of matter? We find a criterion on the compacity of the objects that
must be satisfied in order for the answer to this question to be positive and given
by perturbative arguments. If this criterion is not met, the answer to this question
must be addressed fully non perturbatively along the past lightcone, even though
the spacetime geometry can be described perturbatively.

1 What is the fitting problem?

Cosmology is unique among physical sciences for a certain number of reasons. First,
the Universe is given once and for all, and there is no possibility to compare it to
another Universe. This can usually be overcome by supposing that the initial con-
ditions for the Big Bang model must be generic in some reasonable sense, or that
some mechanism (e.g. inflation) is responsible for making them generic. Second,
we are the only available observers in the Universe; there might be other observers,
but we do not have access to their observations. The only piece of information we
have on the Universe comes from our past lightcone, and a few local (geological)
measurements on our worldline. Therefore, in general, one cannot rely purely on
observations to fully determine the nature and dynamics of the Universe: one has to
introduce extra assumptions on the theory of gravitation, the geometry of the Uni-
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verse on large scales and the physical nature of its matter content. In the present
paper, we will suppose throughout that gravity obeys the laws of General Relativ-
ity, and we will concentrate on the other two points: the geometry of the Universe
and its matter content. In the standard model of cosmology, it is assumed that ’on
average’, on sufficiently large scales, the distribution of matter in the Universe is
well described by a set of perfect fluids whose energy densities and pressures are
locally homogeneous and isotropic; this results in Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) Universes with spatial sections that are maximally symmetric, i.e.
determined entirely by their constant Gaussian curvature. This assumption is based
on the observed almost isotropy of the Cosmic Microwave Background around us,
together with the Copernican Principle, and is usually called the Cosmological Prin-
ciple. It is clear that it is an extrapolation outside our past lightcone, since the notion
of average implicitly present in this principle tells us something about the spatial
distribution of matter, starting from its distribution along our past lightcone. In a
nutshell, the fitting problem [1] can be summarized by the question: does the effec-
tive FLRW model obtained by extrapolating the observed properties down our past
lightcone coincide with the effective FLRW model obtained by smoothing the spa-
tial distribution of matter? Of course, this question is not independent on the set of
observers used to define the notion of spatial distribution: it makes use of a preferred
set of observers, called fundamental in the standard model; usually, in the late-time
Universe, the fundamental observers are supposed to be comoving with virialised
objects such as galaxies, so as to include us among fundamental observers. In this
paper, we will try and address the fitting problem by considering a special dynami-
cal solution to the field equations consisting in a regular cubic lattice of initial cell
size L and of objects of equal masses M. The solution is exact at second order in the
small parameter

√
M/L and we will see that it exhibits, on average, the same dy-

namical behaviour than the equivalent flat FLRW model with a non-relativistic fluid
of density ρ = M/L3, therefore showing that, at second order in

√
M/L, there is no

backreaction in the model [2]. Then, because the solution for the metric is exact at
this order, we will be able to solve the Sachs equations at second order in

√
M/L in

order to reconstruct observables such that the distance-redshift relation. We will see
that this solution for observables presents some divergences linked with the com-
pacity of the object: if the extension η of the objects is too small, the perturbative
expansion of the solution of the Sachs equations is no longer valid, even though the
perturbative expansion of the solution of the Einstein field equations remains stable.
Namely, we will show that observables in this model remain very close to the ob-
servables calculated in the analogue FLRW model with energy density ρ = M/L3,
as long as the parameters of the lattice obey: M

L ≪O (1)
(η

L

)4. If this condition is not
satisfied, then observables cannot be calculated perturbatively, even though the met-
ric is well approximated by the perturbative expansion, and one must solve the full
system of Sachs equations [3]. Results regarding this complete integration are hinted
at in this paper. These results illustrate the importance of the fitting problem in cos-
mology: the kinematically averaged FLRW model and the FLRW reconstructed by
fitting observations might differ significantly (if calculated perturbatively, at least),
even in the absence of (kinematical) backreaction. We work in units G = c = 1.
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2 A lattice Universe: kinematics and observables

2.1 The cubic lattice solution

Let us start by describing the lattice solution (see [2] for a complete derivation);
we will only sketch the results and discuss their implications. We start with a cubic
lattice of size L with identical masses M at the centre of each cell. If the masses on
the lattice are to represent typical galaxies, we can choose, as our typical parameters
M ∼ 1011M⊙ and L ∼ 1 Mpc, where M⊙ ∼ 1030 kg is the Solar mass, and L is
of order of the intergalactic distances. Then, the natural parameter of the lattice
is RS/L ∼ 10−8 ≪ 1, where RS = 2M is the Schwarzschild radius of the masses.
Therefore, we can look for a solution expanded into powers of

√
M/L (in [2] we

prove that there is no perturbative solution in powers of M/L); this will lead to
linearised field equations that can be solved exactly. We choose coordinates that
are comoving with the masses: g00 =−1, and spatial coordinates are Cartesian and
adapted to the symmetries of the lattice. The distribution of matter is therefore a
three dimensional Dirac comb with the masses located at xn = Ln, n ∈ Z3; the
energy momentum tensor is then: Tab = T00δ 0

a δ 0
b such that:

T00 ∝ M ∑
n∈Z3

δ (3)(x−Ln).

Actually, the field equations do not have a solution for such a source term [4, 2],
because the formal series solution presents a UV divergence coming from the point-
like nature of the masses. Therefore, we introduce a UV cut-off by giving a small but
finite extension to the masses, η and by replacing the Dirac deltas by their standard

approximation: δ (x−nL)∼ 1
η
√

π e
− (x−nL)2

η2 . Then, we write the source term in Fourier

series, and we expand the field equations in powers of
√

M/L and solve them order
by order, to find the following solution at second order: ∀i ∈ {1,2,3},g0i = 0, and
∀(i, j) ∈ {1,2,3}2:

gi j = δi j

[
1+2ε

√
M
L

√
8π
3

t
L
+

2M
L

(
fη(x)+

2πt2

3L2

)]
+

M
L

t2∂ 2
i j fη(x) (1)

where ε =±1 and:

fη(x) =
1
π ∑

n∈Z3∗

e−
π2 |n|2η2

L2

|n|2
e

2π
L in.x. (2)

Let us insist on the fact that this solution is exact at order M/L. We can now calcu-
late the rate of expansion between two masses of the lattice. For that, consider two
masses on the x-axis (all the other axes are equivalent, by symmetry), separated by
a coordinate distance NL, for N an integer. The physical distance between the two
masses is given by l(t) =

∫ NL
0

√
gxxdx, and, expanding the square root to order M/L
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we find the effective scale factor of the lattice:

a(t)≡ l(t)
NL

= 1+ ε
√

8π
3

√
M
L3 t − 2πMt2

3L3 . (3)

The Hubble flow defined by H(t) = ȧ(t)/a(t) is then found to be, at order M/L:

H(t) = ε
√

8π
3

√
M
L3 − 4πMt

L3 . Thus defining the initial Hubble rate H0 = ε
√

8π
3

√
M
L3

and choosing the expanding solution, ε = 1, we get:

H(t) = H0 −
3
2

H2
0 t +O(H3

0 ) (4)

and this corresponds exactly, at order M/L ∝ H2
0 to a flat FLRW model filled with

non-relativistic dust. The result is actually valid at order (M/L)3/2 [2]. Thus, the
model with discrete masses on a cubic lattice, once smoothed, is identical to a FLRW
model with dust, with the corresponding smeared energy density. This means that,
from purely kinematical considerations, one cannot distinguish between the average,
homogeneous fluid description of the lattice and the exact behaviour of this lattice:
there is no backreaction (in the sense of [5]) associated with spatially smoothing the
lattice.

2.2 Observables, compacity and the fitting problem

Now that we have a solution of the field equations that does not display backreac-
tion, we can try and address the fitting problem by comparing observables in the
lattice with observables in the corresponding, smoothed FLRW Universe with the
same kinematics: any discrepancy between the two will be a sign that there exists a
fitting problem. In order to carry the comparison, we calculate the distance/redshift
relation in the lattice. The 4-velocity of an observer in one of the objects of mass M
is given by ua = (1,0,0,0) according to our choice of coordinates, and we define λ ,
an affine parameter down light rays. We denote by O and S the locations of observer
and the source respectively. Given the normalisation chosen in [3], the null vector
of a past-directed light ray, ka is such that k0

O = 1, so that we have, for the redshift:

1+ z(λ ) = (kaua)S
(kaua)O

= k0 (λ ). Therefore, we can solve the 0 component of the null

geodesic equation order by order in terms of
√

M/L. The distance is obtained sim-
ilarly by solving Sachs equations [6] expanded at order M/L. The Sachs equations
are actually exactly solvable in this perturbative scheme because the equations for
the isotropic expansion and the shear decouple from each other at that order. Details
of the calculations can be found in [3]. In terms of the past-directed affine parameter
λ < 0 (and λ = 0 at the observer), we find that, at order M/L:
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z(λ ) =−
√

M
L

√
8π
3

λ
L
+

M
L

(
14πλ 2

3L2 +
[

fη(x(λ ))−λ∂i fη(x(λ ))vi]λ
0

)
(5)

rA(λ ) =−λ +
2π
3

M
L

λ 3

L2

[
1+ ∑

(n,p,q)∈Dv

e−
π2(n2+p2+q2)η2

L2

]

+
2
π

M
L ∑

n∈N3∗\Dv

e−
π2(n2+p2+q2)η2

L2
l=4

∑
l=1

−λ
cos

(
2πλv.ul

L

)
(v.ul)2 +

L
π

sin
(

2πλv.ul
L

)
(v.ul)3

 . (6)

Here: u1 = (n, p,q), u2 = (n,−p,−q), u3 = (n, p,−q), u4 = (n,−p,q), and
Dv = {(n, p,q) ∈ N3

∗ : ∃ l ∈ {1,2,3,4}/ul .v = 0}. This means that the first sum
is over all the triplets that cancel one at least of the ul .v, whereas the second sum
is over all the other triplets. These expressions coincide with their FLRW counter-
parts for the FLRW model obtained by smoothing the distribution of masses of the
lattice, up to a priori small corrections proportional to M/L (the parts that are non-
polynomial in λ ). Actually, it turns out that the additional terms in the expression
for rA (λ ) are not generally small, because some denominators in the second sum
become extremely small and the corrections to the FLRW distance become of order√

M/L, or even 1, instead of being of order M/L; see [3] for a detailed discussion of
these effects. By carefully studying these additional terms, we arrive at the conclu-
sion that the perturbative corrections to the FLRW distance/redshift relation remain
small provided:

M
L

≪ O(1)×
(η

L

)4
. (7)

This relation between the mass of the object, M/L, and the compacity of the lattice,
η/L, shows that if objects are too compact, the perturbative expansion breaks down,
as far as the calculation of observables down a past lightcone is concerned, even
though the perturbative calculations remain a good way of estimating the spacetime
geometry (i.e. of solving the Einstein field equations). Similar problems were en-
countered in perturbations of an FLRW background in [7]. If this criterion is not
satisfied, the perturbative calculations cannot be trusted, as second order terms (in√

M/L) become of order O(1): one needs to integrate the system of Sachs equations
without any perturbative expansion, thus retaining the coupling between isotropic
expansion and shear. This is an ongoing work [8] and preliminary results indicate
that when Eq. (7) is not satisfied, the contribution of the shear modifies significantly
the FLRW observables: the corrections are usually smaller than the order 1 correc-
tions predicted by the perturbative expansion presented here, but they are definitely
significant to raise the issue of a fitting problem. For example, Fig. 1 shows the per-
cent change δ rA(z) = 100×

(
rA(z)− rFLRW

A (z)
)
/rFLRW

A (z) in the angular distance
between a lattice with M = 1012M⊙, L = 1 Mpc, η = 0.01L (lattice of galaxy-like
objects) that does not satisfy the criterion (7) and the equivalent smoothed FLRW
model, obtained from a complete integration of Sachs equations. We see that the ’di-
vergence’ problem encountered for such lattices when using perturbative methods
is somehow ’cured’ by solving the full system, even though, differences appear and
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seem to be systematically increasing with the redshift, irrespective of the direction
on the sky.
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Fig. 1 Percent change δ rA(z) in the angular distance between a lattice with M = 1012M⊙, L = 1
Mpc, η = 0.01L and its FLRW counterpart, obtained from a complete integration of Sachs equa-
tions. The result is presented for 25 different directions on the celestial sphere of the observer
located at the centre of one of the masses.

Table 1 presents the typical values of M, L and η for some lattices of standard
astrophysical objects and shows whether the criterion (7) is satisfied or not for such
lattices. We see that a lattice of galaxies composed of their disk only marginally
fails to pass the criterion, whereas when we include the Dark Matter halo, they pass
the test marginally. A lattice of cluster-like objects passes the criterion easily, but

Table 1 Some typical lattices and their characteristic parameters. The choices are only indicative.
The last column answers the question: does such a lattice satisfy the criterion (7)?

Object RS
(Mpc)

L
(Mpc)

η
(Mpc)

Criterion
passed

Neutron
star 10−19 10−6 10−18 No

Galaxy
(disk) 10−8 1 10−2 No

(Marginally)

Galaxy
(disk+DM halo) 10−7 1 0.05

Yes
(Marginally)

Galaxy
cluster 10−4 30 20 Yes
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η/L ∼ 1, and one can hardly talk of a lattice of separated objects in that case: such
objects could not really be considered as virialised, independent objects as we did
in this work.

3 Discussion

We have presented a toy model of the Universe in the form of a regular cubic lattice
of equal masses of typical size η whose kinematics is identical on large scales to
the FLRW model obtained by smoothing the distribution of masses; this model does
not exhibit any backreaction. We have seen that, despite the fact that a perturba-
tive expansion in terms of RS/L gives a very good approximation for the geometry
of space-time, it is not suitable for the accurate calculation of observables in the
model if the objects are too compact. Specifically, we have shown that a perturba-
tive calculation of observables can be trusted only if the parameters of the lattice
satisfy (7). If this is not the case, a non perturbative approach is needed to fully take
into account the effect of the Weyl curvature sourcing the shear of bundles of null
geodesics. Somehow, this was to be expected: the perturbative calculation decou-
ples the shear from the isotropic expansion, making the observables independent
on the Weyl curvature, but we know that in a mostly empty Universe (masses very
compact), the behaviour of null ray bundles must be dominated by the Weyl cur-
vature. The bound (7) gives a quantitative criterion to decide what ‘too compact’
means. This also illustrates the importance of the fitting problem: if (7) is not sat-
isfied, the FLRW reconstructed by smoothing spatially the kinematics of the model
differs systematically and sometimes significantly from the FLRW model fitting the
observations on the past lightcone of observers. Choosing the order of magnitude of
the parameters of the model to represent something ‘realistic’ is difficult, but it is
interesting to note from Table 1 that galaxy-like objects and lattices are exactly at
the transition between the lattices that pass the criterion (7) and those which do not.
This might be extremely important in the precise characterisation of the properties
of Dark Energy, and the detailed exploration of the consequences of this bound as
well as the precise non perturbative estimates in the cases when it is not satisfied are
the subject of an ongoing work [8].
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