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Abstract We study effects of gravitational waves which in the first order form a
time-symmetric ingoing and then outgoing pulse of rotating waves. The influence
of the angular momentum of these waves on the rotation of local inertial frames with
respect to the frames at great distances is analyzed by solving the relevant Einstein
equation to second order. Also the apparent motions of the fixed stars on the celestial
sphere as seen through rotating waves from the local inertial frame in the centre are
calculated and displayed.

1 Introduction

It was just 100 years ago in Prague when Einstein wrote the paper [1] in which he,
for the first time, expressed his understanding of Mach’s Principle. Within his pre-
General Relativity theory in which there was only one metric function he considered
a mass point inside a shell accelerated “upwards” and found that the mass-point is
dragged along by the shell.

Many formulations and studies of Mach’s Principle appeared during the last 100
years, most of them were analyzed in the Tübingen conference in 1993 which led
to the remarkable volume [2] containing lectures as well as valuable discussions.
We studied Machian effects in various contexts, both in asymptotically flat space-
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2 Jiřı́ Bičák, Joseph Katz, Tomáš Ledvinka, and Donald Lynden-Bell

times and within cosmological perturbation theory – see, e.g., [3], and number of
references therein; later, cf. Schmid [4].

More recently, we investigated a subtle question whether dragging of inertial
frames should be attributed also to gravitational waves. After the discovery of bi-
nary pulsars losing energy and angular momentum as a consequence of emitting
gravitational radiation it would be surprising if gravitational waves did not have an
influence on local inertial frames. However, there are still doubts uttered about the
status of gravitational stress-energy as compared with stress-energy tensor Tµν of
matter in relation to Machian ideas (see, e.g., [2], p. 83).

In the present work [5] we investigate the effects of rotating gravitational waves
in a more general, asymptotically flat setting, without assuming cylindrical sym-
metry. We again start out from linearized theory and construct an ingoing rotating
pulse of radiation which later transforms into an outgoing pulse. While in the cylin-
drical case our waves were characterized by just one harmonic index m governing
the number of wave crests in φ , now the situation becomes considerably richer in-
volving both spherical harmonic indices l and m.

Near the origin the first-order metric of our waves behaves as rl , so the region
around the origin will be very nearly flat for l sufficiently large. When, however,
a local inertial frame is introduced at the origin, we find that its axes rotate with
the angular velocity ω0 with respect to the lines φ = const of the global frame, i.e.,
with respect to stars at infinity. The situation thus indeed resembles the interior of a
collapsing slowly rotating shell - see [6] where the vorticity of the lines φ = const
is given in covariant form.

2 Rotating scalar and gravitational waves

We first construct a solution of the scalar wave equation in a form of the rotating
wave pulse written in spherical coordinates t,r,θ ,ϕ

ψlm(t,r,θ ,ϕ) = Ql(t,r)Ylm(θ ,ϕ) = Bl2l l!
(r/a)lYlm(θ ,ϕ)

[((a+ it)2 + r2)/a2]l+1 , (1)

Fig. 1 The snapshots of the rotating waves ψlm in times t/a = −1,− 1
2 ,0,

1
2 ,1 (from left to right)

for l = 17,m = 11. Waves are localized in the radial direction so that they resemble a falling and
rotating shell.
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where l,m are harmonic indices, a is typical wave pulse width and Bl is the am-
plitude. Here both numerator and denominator are complex functions so the actual
wave profile given by its real part has plenty of features as can be seen in Figure 1.
Among them the rotating character of the wave, its regularity and the fact that for
high values of l the wave is concentrated near a shell with radius r2 = a2 + t2 are
most important.

In the construction of rotating gravitational waves within linearized Einstein the-
ory we then use the Regge-Wheeler equation for odd-parity waves [7] which on the
flat Minkowski background simplifies to a usual wave equation □ψ = 0. We de-
compose the metric perturbations into tensor harmonics [7], [8], [9] and consider
only the odd-parity waves with the Regge-Wheeler gauge condition ((i) = (1),(2)
denotes the first- and second-order perturbations)

h(i)µν = ∑
lm

√
2l(l +1)

r

[
−h(i)0lm(t,r)c0lm µν + ih(i)1lm(t,r)clm µν

]
(2)

where c0lm,clm are the odd-parity harmonics [9]. The first order radial functions
h(1)0lm(t,r) = −∂r(r2Ql)/(l2 + l − 2) and h(1)1lm(t,r) = −∂t(r2Ql)/(l2 + l − 2) of the
odd-parity metric perturbations we directly obtain from the radial part Ql(t,r) of
the scalar field ψlm.

In [5] we also analyze and relate the energy and angular momentum densities of
scalar and gravitational waves.

3 Second order perturbations

To determine the influence of gravitational waves h(1)µν on the rotation of local inertial

frames at the axis of symmetry due to the second-order metric perturbations h(2)µν we
solve the equations

R(1)
µν [h

(2)] =−<R(2)
µν [h

(1),h(1)]> . (3)

where we introduced the averaging symbol <>. We expand both sides in tensor
spherical harmonics. For general l the l.h.s. yields a hyperbolic set of equations for
radial functions h(2)0 and h(2)1 indicating non-instantaneous effects, but the inertial
frames at the origin will be influenced primarily by the dipole perturbations and it is
well known that for l = 1 one can fix h(2)1 = 0 by an appropriate gauge transformation
[7], [10] and arrive thus at elliptic equation for h(2)0 . In this equation the axially

symmetric component <R(2)
tφ [h(1),h(1)]> on the r.h.s. of (3) appears as the only

source for the dipole second-order perturbations

∂rrh
(2)
0 (t,r)− 2

r2 h(2)0 (t,r) =
4π√

2l(l +1)r

∫ π

0
<R(2)

tφ > ∂θYl0 dθ . (4)
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This equation can be solved by variation of constants. While the Coriolis and cen-
trifugal accelerations are higher order in the angular velocity ω0 of the rotation of
an inertial frame (of a gyroscope) located near the origin, g(2)tφ =−ω0 r2 sin2 θ there

and so the behavior of h(2)0 at r = 0 determines

ω0 =
1

4π

∫ ∞

0

∫
S2

R(2)
tφ [h(1),h(1)] dΩ

dr
r
. (5)

Although R(2)
tφ [h(1),h(1)] has a complicated structure, we obtained the angular veloc-

ity ω0 in the closed, although quite lengthy, form. The profiles of ω0(t) are in Figure
2.
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Fig. 2 The dependence of normalized angular velocity of the central inertial frame
ω0(l,1; t)/ω0(l,1; t = 0) on the parameter l = 2, 3,10,20,30 (from inside to out). The dashed
line indicates the limit for large l.

4 Observing stars through gravitational waves

We evaluate the first-order effects of the waves on the propagation of photons which
apparently change the position of distant stars in the sky as seen by an observer fixed
in the flat region at the origin. We found that the change of apparent star’s celestial
coordinates δφ ,δθ can be computed as a perturbation of the ingoing radial null
geodesic. This change of the direction of a momentum of the photon registered at
time T can be written using integrals along the unperturbed ray. They yield quite
simple formula for trajectory of the star with initial coordinates φ,θ in a form of
conformal mapping of a straight line in a complex plane by function z−l−2
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l = 13 l = 33

Fig. 3 Since light from distant stars is influenced by the gravitational waves the observed positions
of the stars change. An observer at the origin can record the apparent position of the stars on the
celestial sphere on a photographic plate. When appropriately scaled and rotated, the trajectories of
all stars are the same. A star starts at the origin of the plate (x = y = 0 in the planes above) and
moves along closed trajectories the structure of which becomes more complicated with increasing
l. The trajectory of a star with celestial longitude φ fits in an ellipse with semi-axes ∆θ ,∆φ rotated
on the celestial sphere by the angle lπ/2+mφ (see Eq. (6)).

δφ(T )
∆φ

+ i
δθ(T )

∆θ
=

il eimφ(
1+ i T

a

)l+2 . (6)

where ∆θ = B̂lmPm
l (cosθ)/sinθ , ∆φ =−B̂lP′m

l (cosθ), and B̂l = Nm
l 2(l−1)!. See

Figure 3 for examples of star image trajectories.
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