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Abstract A nonlinear stability analysis is carried out for the trace-free (radiation)
perfect fluid Friedmann-Lemaı̂tre-Robertson-Walker models with a de Sitter-like
cosmological constant. It is shown that the solutions close to the above FLRW space-
times exist globally towards the future and are future geodesically complete. For this
analysis we formulate the conformal Einstein field equations for a trace-free (radia-
tion) perfect fluid in terms of the Levi-Civita connection of a conformally rescaled
metric.

1 Introduction

During his time in Prague, 100 years ago, Einstein started his work on a general
theory of relativity [1]. Since then many exact solutions have been found and anal-
ysed in detail — see e.g. [2, 3] for an overview. Typically these solutions lead to
models which approximate certain features of our universe by making assumptions
on the matter model or spacetime symmetries. As a result of this, a cosmological
model is a representation of the universe at a particular averaging scale. This leads
to the following important question: “How sensitive are the predictions derived from
these models to perturbations”. The answer is of interest for the following reasons.
Firstly, the universe does not match an idealised model on all scales. Secondly, any
observation of the universe (or a subsystem of it) gives rise to data that includes a
certain margin of error. Thirdly, numerical calculations and simulations have made
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marked progress in recent years. However, any simulation is limited by the finite
precision of the individual computations and hence has to repeatedly deal with nu-
merical errors. In all three scenarios one hopes that the unavoidable deviation from
reality has negligible consequences for the predictions, as long as this deviation is
sufficiently small. However, the concern about stability is not at all limited to cos-
mological scales. It equally applies to stars and other compact objects. One of the
main open problems concerns the behaviour of black holes under perturbations —
see e.g. [4].

Due to the nonlinear nature of the Einstein field equations, the question of sta-
bility is not straightforward. Seminal work by Friedrich [5, 6], using conformal
methods, and Christodoulos and Klainermann [7], using a detailed analysis of the
structure of the underlying evolution equations, have provided an essential starting
point for this problem. In recent years the topic has seen several papers addressing
the stability problem for a range of matter models, dimensions and types of cosmo-
logical constants.

The problem of nonlinear stability of the Euler-Einstein system for de Sitter-like
spacetimes has been analysed in [8, 9]. It was shown that the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) solutions with a barotropic equation of state of the form
p̃ = (γ − 1)ρ̃ , where 1 < γ < 4

3 , are future asymptotically stable under small per-
turbations. The case of a pure radiation perfect fluid (γ = 4

3 ) was not covered by
this analysis. This motivated the authors to investigate this case using conformal
methods [10]. The details and the results are outlined in this article.

We address the question of nonlinear stability for small perturbations of the
FLRW solutions, which describe a trace-free perfect fluid with de Sitter-like cos-
mological constant. The main result is given by the following theorem:

Theorem 1. Suppose one is given Cauchy initial data for the Einstein-Euler system
with a de Sitter-like cosmological constant and equation of state for pure radiation
p̃ = 1

3 ρ̃ . If the initial data is sufficiently close to data for a FLRW cosmological
model with the same equation of state, value of the cosmological constant and spa-
tial curvature k= 1, then the development exists globally towards the future, is future
geodesically complete and remains close to the FLRW solution.

2 Methodology and analysis

For a spacetime with a pure radiation perfect fluid the problem of nonlinear stability
is addressed using the conformal methods of [11, 12, 5]. In this approach, which
is summarised below, the physical spacetime (M̃ , g̃µν) is conformally embedded
into a manifold (M ,gµν), referred to as the unphysical spacetime here, where the
metrics are related by

gµν = θ 2g̃µν . (1)

The physical Einstein field equations
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R̃µν − 1
2 R̃g̃µν +λ g̃µν = T̃µν (2)

are reformulated in terms of the geometry of (M ,gµν) and some rescaled matter
variables, leading to a new set of equations referred to as the conformal Einstein
field equations (CEFE). A key advantage of this approach is that one can study
global problems in (M̃ , g̃µν) in terms of a local analysis near conformal infinity in
(M ,gµν). For this analysis one has to show that the CEFE associated to the chosen
matter model form a regular system of PDEs on (M ,gµν). One then proceeds by
formualting an evolution problem in the form of a first order symmetric hyperbolic
(FOSH) system to deduce existence and uniqueness results. In order to derive the
desired stability results, one shows that a chosen reference spacetime is a regular
solution to the CEFE, respectively the associated FOSH system, and invokes Kato’s
stability theorem [13].

The CEFE have inherited degrees of freedom. One needs to fix a set of coordi-
nates xµ , a frame {ek} and the conformal factor θ . In the following, we use frame
components with respect to the chosen frame {ek}.

There are two main methods to fix these gauge freedoms. One method uses gauge
source functions [11, 14, 5, 6] to evolve the coordinates, the frame and the confor-
mal factor. In the other method, a congruence of conformal geodesics [15, 16, 17] or
conformal curves [10] is used to construct a conformal Gaussian coordinate system.
The congruence also induces a general Weyl connection, which is used to prop-
agated the frame {ek}, and a canonical choice of the conformal factor. Here we
employ the first method. In particular, we fix the conformal factor θ locally by set-
ting the unphysical Ricci scalar to R = − 1

6 and work in the Levi-Civita connection
induced by gµν in (1). Moreover, the frame {ek} will be g-orthonormal.

The general approach for trace-free matter models has been discussed in [6]. In
[10] it was shown how to address the case of a pure radiation perfect fluid (γ = 4

3 ).
The energy momentum tensor is given by

T̃i j =
4
3

ρ̃ ũiũ j −
1
3

ρ̃ g̃i j (3)

where ũµ is the fluid flow velocity. As shown in [6], if one defines Ti j = θ−2T̃i j then

∇iT̃i j = 0 ⇔ ∇iTi j = 0. (4)

We thus define new variables ρ = θ−4ρ̃ and ui = θ ũi so that

θ−2T̃i j = Ti j =
4
3

ρuiu j −
1
3

ρgi j. (5)

It was shown in [18] how to obtain a FOSH system for (3) if ρ̃ ̸= 0 and ũ0 ̸= 0,
where e0 is timelike vector. The same method works for (5) using (4). Moreover
the approach can be adapted to derive a FOSH system for ρi = ∇iρ and ui j = ∇iu j.
It is necessary to introduce these new variables in order to close the overall FOSH
system derived from the CEFE.
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3 Existence and uniqueness

Overall it can be shown that for ρ ̸= 0 and u0 ̸= 0 the CEFE for a radiation fluid form
a regular FOSH system. In particular this system is regular at conformal inifinity I ,
where θ = 0.

Given sufficiently smooth initial data, the CEFE have a unique solution (M ,gµν),
which implies a solution (M̃ , g̃µν) to the Einstein field equations for a radiation
fluid by setting M̃ = M |{θ>0}, g̃µν = θ−2gµν . Thus, if the initial data is given
at or near conformal infinity, then one can construct a spacetime (M̃ , g̃µν) with a
radiation fluid for which a part reaches all the way to conformal infinity I .

4 The reference spacetimes

The family of FLRW metrics will be considered as the reference spacetime (some-
times also referred to as the background solution) against which the stability analysis
is carried out. The FLRW metric may be written in the form (see e.g. [3], page 471):

ds2
FLRW = dt2 − a(t)2

(1+ 1
4 kr2)2

(dr2 + r2(dθ 2 + sin2 θdϕ 2)). (6)

As is well know, the FLRW spacetimes are conformally flat and they can be suitably
rescaled to conformally embed them into the Einstein cosmos, whose metric is given
by:

ds2
EC = dτ2 −dσ2

S3 = dτ2 − (dψ2 + sin2 ψ(dθ 2 + sin2 θdϕ 2))

In this article we shall focus on FLRW cosmologies whose spatial sections have
positive curvature (k = 1). Changing coordinates we have

ds2
FLRW = a(t)2 [dτ2 −dσ2

S3

]
= a(t)2ds2

EC. (7)

Thus, the conformal factor is given by θ = 1/a(t). Our analysis is restricted to trace-
free perfect fluids (γ = 4

3 ) with λ < 0 in (2). There exists a static solution amongst
the remaining FLRW solutions for which

a(t) = a0 = constant, λ = λ0 ≡ 3
2 a−2

0 .

For the dynamical FLRW solutions in our family we can state the following:

Proposition 1. For a FLRW cosmology with k = 1, γ = 4
3 , ȧ(t0)> 0 and λ < 0, λ ̸=

λ0, the scale factor, a(t), is a smooth, non-vanishing and monotonically increasing
function for t ∈ [t0,∞), with t = t0 > 0 and a0 = a(t0)> 0. Furthermore,

τ∞ :=
∫ ∞

t0

ds
a(s)

< ∞,
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and one has the limits

a → ∞, ȧ/a →
√

− 1
3 λ , ä/a →− 1

3 λ ,

as t → ∞. The density for these models is given by

ρ̃ = ρ̃0a4
0/a4,

where ρ̃0 = ρ̃(t0). In particular, one has that ρ̃ → 0 as t → ∞.

The proof of this proposition follows from direct inspection of the explicit solu-
tions —see e.g. [3], page 78. Moreover, the spacetime is de Sitter-like for late times,
that is conformal infinity is given by a spacelike hypersurface.

It is straightforward to check directly that the Einstein cosmos is a regular solu-
tion of the CEFE for a radiation fluid and satisfies our gauge choices (in particular
R[gEC] =− 1

6 ).

5 Stability

Note that the spatial slices of the Einstein cosmos and our FLRW solutions are 3-
spheres. Hence for the stability analysis we consider an initial surface S with the
topology of S3 and g̃-unit normal ñ.

In the sequel, it will be assumed that one has a solution (S , h̃αβ , K̃αβ , ρ̃, ũα) to
the (physical) λ < 0 Einstein-Euler perfect fluid constraint equations

r̃+ K̃2 − K̃αβ K̃αβ = 2(λ − 1
3 ρ̃(4ũ∥−1)),

D̃α K̃αβ − D̃β K̃ = 4
3 ρ̃ ũ∥ũβ ,

where D̃β and r̃ denote the Levi-Civita covariant derivative and the Ricci scalar of
the intrinsic 3-metric h̃αβ of S . K̃αβ is a symmetric 3-dimensional tensor corre-
sponding to the extrinsic curvature of S with respect to the g̃−unit normal ñµ . In
addition, ũ∥ ≡ ũµ ñµ . Thus, one has Cauchy initial data for the Einstein-Euler system
with a de Sitter-like cosmological constant and equation of state for pure radiation,
p̃ = 1

3 ρ̃ . From this data one can obtain a solution to the corresponding constraints
induced by the CEFE.

For the stability analysis we make use of the Hilbert space Hm(S3,RN) with
m ≥ 4 — for more details see e.g. [5]. Using an extension of the general existence
and stability Theorem by Kato [13] provided in [12] we are then able to prove the
following more detailed version of Theorem 1.

Theorem 2. Let w0 be initial data on S3 for CEFE for radiation fluids with λ < 0
such that w0 is sufficiently close to ẘ0 (FLRW data with λ < 0 and k = 1). Then

(i) a solution w to the CEFE exists on [0,T ]×S3 with T > τ∞,
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(ii)w implies a Cm−2 solution of the Einstein equations for a radiation fluid on M̃ =
{p ∈ [0,T ]×S3 : θ(p)> 0},

(iii)the development exists globally towards the future,
(iv)M̃ is future geodesically complete and I + is a space-like hypersurface.
(v)w remains close to the FLRW solution, and hence, it is nonlinearly stable.

6 Discussion

As originally envisaged, the above theorem provides a proof for the case γ = 4
3

missing in [9] using the conformal method. It should be noted that in the mean
time the results in [9] have been extended to cover γ = 4

3 as well [19]. In a next
step one might consider spacetimes with null dust, such as the Robinson-Trautman
and the Vaidya spacetimes, which describe radiating black holes. It remains to be
seen whether the conformal method can in turn be generalised to cover more general
perfect fluids with γ ̸= 4

3 . This requires a formulation of the CEFE for matter models
that have non-vanishing trace, which is an open problem in itself.

It is of interest, whether the CEFE for radiation fluid can be formulated using
the alternative method with a congruence of conformal curves [10]. This method
has the advantage that some of the PDEs reduce to transport equations along the
congruence. Moreover, it allows one to prescribe/pretedict the location of conformal
infinity, since the conformal factor is known a priori in terms of the specified initial
data. This can simplify the explicit analysis of conformal infinity for the spacetime
one is dealing with.

The use of the CEFE for the stability analysis presented here is restricted to
regions near conformal infinity. The region near the initial singularity cannot be
analysed as the CEFE are not regular any longer in the form given here. For an
analysis of polytopic perfect fluid spacetimes near an initial singularity we refer
the reader to [20]. The approach in [20] is based on conformal methods as well.
However instead of the conformal factor vanishing, as it does at I , it diverges to ∞
at the initial singularity. Nevertheless, the conformal geometry is perfectly regular
in this region. It would be interesting to know whether a variant of the CEFE exists
which is regular at the singularity and corresponds to the analysis in [20].
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