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Abstract We introduce strong field gravomagnetism and illustrate its use by con-
structing exact rolling toroidal solutions of Einstein’s equations.

1 Introduction

The 1966 edition of the Classical theory of Fields by Landau and Lifshitz [1] gives
Einstein’s equations for general stationery metrics in a form that has strong analo-
gies with Maxwell’s electrodynamics. The technique identifies the points of space
that lie along the time-like Killing vector, so it does not extend continuously inside
ergospheres where the Killing vector becomes space-like. We write the metric in the
form

ds2 = ξ 2(dt −Akdxk)2 − γkldxkdxl = gµν dxµ dxν . (1)

We work in the positive definite three dimensional metric of space, γkl , where k
and l run from 1 to 3. It is not a cross-section of the four metric by any surface,
nevertheless we may define its Christoffel symbols λ m

kl and the corresponding three-
dimensional Ricci tensor of this gamma space, Pkl . We use commas to denote or-
dinary derivatives and semicolons to denote covariant derivatives in gamma space.
The Ricci tensor of space-time will be denoted by Rµν . The divergence and curl are
defined in gamma-space by

div EEE = γ−
1
2 ∂k(

√
γEk) ; (curl EEE)i = γ−

1
2 ε i jk∂ jEk. (2)

We define the gravomagnetic induction BBB by
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BBB = curl AAA , (3)

where Ak is the vector potential defined in the metric (1). Clearly div BBB = 0 so BBB
carries the gravomagnetic flux. Landau and Lifshitz rewrite Einstein’s equations in
gamma space; rewriting their equations in our notation we have with κ = 8πG/c4,

ξ divgradξ +
1
2

ξ 4BBB2 = R00 = κ(T00 −
1
2

g00T ). (4)

Henceforth we use units with c = 1 and G = 1. If we now define a field intensity
vector HHH = ξ 3BBB then their second equation reads

(curl HHH )k =−2κξ T k
0 =−2κJk. (5)

Notice a strong resemblance of this strong field equation to Maxwell’s electrody-
namic equation curlH = 4πj. In both cases the current has no divergence however
in general HHH has a divergence while BBB does not. Clearly HHH is the gradient of a
scalar whenever J is zero. The H k are the spatial components of the twist vector
ηµνστ ξν Dτ ξσ where D is the covariant derivative in the space-time gµν . The last
Einstein equation is

Pkl +
1
2

ξ 2(γklB2 −BkBl)−ξ−1ξ ;k;l = Rkl = κ(T kl − 1
2

gklT ). (6)

To illustrate the power of the analogy between electromagnetism and gravomag-
netism we consider first a straight solenoid of length L with a wire wound n times
around it carrying a current I; the magnetic flux inside is F = 4πnI. This flux
emerges from the pole at one end of the solenoid and spreads over an area of or-
der L2 before returning to the pole at the other end. Even if n increases linearly with
the the length L the equatorial field outside the solenoid F/L2 decreases like 1/L so,
as the length of the solenoid increases, the field outside tends to zero.
The analogous gravitational case is a rotating cylindrical shell and the case that is
solved in General Relativity is the infinitely long cylinder. In such a case the exter-
nal gravomagnetic field will be zero as the returning flux is sent to infinite distances.
Thus it is not surprising that the external metric is static rather than stationary.

Our second, less trivial problem is the toroidal solenoid for which the electrical
case is illustrated below. Here the magnetic field is confined within the solenoid and
there are no poles from which it emerges. Indeed even if the torus carries a charge
as well as a current the external field is purely electrical without any magnetism.
The analogous gravitational problem is a massive toroidal shell that rolls around
the circumference of its small cross-section so that the equator closest to the global
axis moves up while the equator furthest from the axis moves down. We find exact
solutions to this problem in General Relativity in which the metric is static outside
the torus but stationary and non-static inside the torus.
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Fig. 1 In electromagnetism
a wire carrying a current I
tightly wound n times around
a torus produces a field con-
fined within the Torus. In the
mathematics the wire is re-
placed by a continuum whose
total current is called I (not
nI)

2 The general static Weyl metric in toroidal coordinates

Weyl takes the metric in the form

ds2 = e−2ψ dt2 − e2ψ
[
e2k (dz2 +dR2)+R2dφ2

]
(7)

Then, in empty axially symmetric spaces Einstein’s equations give ∇2ψ = 0 where
∇2 is the flat space operator. Also setting

D = ∂R − i∂z, (8)

we have the Weyl equations

Dk = 1
4Re4ψ De−2ψ De−2ψ . So DkD lnR = (Dψ)2. (9)

The general symmetric solution to these equations in toroidal coordinates is given
by [2] whose solution does not include that for k given below,

ψ =
√

u− 3U, where U =
∞

∑
l=0

alPL(u)cos(lη). (10)

Here PL(u) is the Legendre function, L = l + 1
2 ; u = coshζ , 3= cosη ,

R = hsinhζ , z = hsinη with h =
a

coshζ − cosη
. (11)

We then have
dR2 +dz2 = h2 (dζ 2 +dη2) . (12)
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Thus h and R are the scale factors in toroidal coordinates. a is the radius of the
central line torus. On each given torus ζ is constant. On the axis R = 0, ζ = 0 and
ζ is also zero at infinity. On z = 0, η = π when R < a and η = 0 when R > a. The
function k is given by,

k = 1
8

∞

∑
l=0

∞

∑
m=0

alam

[
c(l +m+1)k1

l,m + c(l +m)k0
l,m + c(l +m−1)k−1

l,m

]
+ 1

8

∞

∑
l=0

∞

∑
m=0

alam

[
c(l −m+1)k1

l,−m + c(l −m)k0
l,−m + c(l −m−1)k−1

l,−m

]
, (13)

where kn
l,m are known terms of Legendre functions themselves and their derivatives

and c(m) is short for cos(mη).

3 A toroidal solenoid’s metric and junction conditions

Inside our torus we need a solution with a toroidal gravomagnetic field. For this we
take Bonnor’s nice solution [3] for the metric external to a light beam characterised
as null dust. This clearly must have a toroidal gravomagnetic field. We generalise the
metric by incorporating a constant conicity k̄. Since the symmetry axis is no longer
included in the part of the solution used within our torus, this does not generate a
singularity and is necessary to accomplish the fitting to the external metric. Bonnor’s
metric is then,

ds2 = F [dt − (1−F−1)dz]2 − (e2kdR2
+R2dφ2 +F−1dz2), (14)

where F = 8I ln(R/a)+C, C is a constant and I the total current that generates the
gravomagnetic field; in Bonnor’s application it is the current caused by the light ray;
in our application it is the total current that runs around our torus by the short way.
Our task is now reduced to fitting this metric for the inside of our torus to our gen-
eral Weyl metric for the outside. Before attempting this full problem we solved the
easy case of a static equipotential shell with a Bach-Weyl [4] exterior metric. The
Riemann tensor inside the equipotential toroid is zero but the metric there though
locally flat is actually “conical”, so it is not globally flat. k is a negative constant not
zero. It was solving this simpler problem that alerted us to the necessity of incorpo-
rating such a conicity into Bonnor’s metric in the general problem. The shapes of
the Bach-Weyl equipotential surfaces are shown below. Inside the limiting one that
intersects the axis, the conicity, k, is zero so for it the internal space is globally flat.
A massive shell may be placed on any one of these equipotential surfaces leaving
the shapes of the external equipotentials unchanged but of course changing the val-
ues of their potentials. Inside such a shell the potential is constant. We determined
the limits to these masses so that the pressure components in the shell do not exceed
the limits set by the energy conditions.
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For our rolling toroid the complete set of Einstein’s equations are given in equations
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Fig. 2 Equipotentials of the Bach-Weyl static Toroids.

(4), (5) and (6). None of these equations involveAAA itself as opposed toBBB = curlAAA ,
so the boundary conditions for all such problems can be expressed in terms of BBB
rather than AAA . Four of them are strikingly similar to the boundary conditions in
electrodynamics. These are: that the potential ψ is continuous, that BBB.nnn is contin-
uous, that HHH ×nnn = 16πJ (the gravomagnetic field being zero outside) and that
from integrating (1.4) the discontinuity in the potential gradient along the normal is
related to an appropriate surface density. We also need the gamma metrics on the
surfaces to be identical and from integrating equation (6) across the surface we re-
quire the discontinuities of the external curvatures of the gamma space 3-metrics to
be related to the stresses in the toroid. While this procedure is equivalent to Israel’s
it is easier to carry out since it does not involve AAA and fits the surfaces in space
rather than space-time. We give below an example of one of our strongly relativistic
rolling toroids for which we carried out this procedure to ensure that the surface
stresses obeyed the dominant energy conditions.

4 A strongly relativistic example

The dominant energy condition limits how much mass our torus can withstand at a
given rolling rate.
Equatorial radii ain/a = 0.826 : aout/a = 1.21. Axial ratio b/a = 0.297.
Total mass M/a = 0.659. Matter current I = 0.008
Rolling speeds across equators 3in, out/c = 0.85, 0.09.
Equatorial pressures (pϕ/σ)in,out = 0.28, 0.934;(pη/σ)in,out = 0.1, −0.57.
We tested our calculations by showing that in the non-relativistic limit the stresses
calculated by the relativistic method balanced the gravity and the centrifugal force
due to rolling. More details of this work are given in [5].
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