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Abstract Geometry is quantized in loop quantum gravity. As a step toward building
a detailed phenomenology of this discrete geometry a model of an atom of geometry
is reviewed. The model, which preserves local Lorentz invariance, exhibits a lever
arm that raises the scale at which the granularity in angle becomes apparent. The
signature of this effect is a systematic shift of observed angles in processes such
as high energy particle scattering experiments. To check assumptions in the model,
coherent states of a simple atom of spatial geometry are explored using information
intrinsic to the quantum state.

1 Introduction

If space-time or spatial geometry is fundamentally discrete, it will be observation-
ally manifest. The kinematics of Loop Quantum Gravity (LQG) predicts discrete
spectra of spatial geometric quantities such as volume, angle, and length. Before the
dynamics, and the quantization, is complete we do not know whether the kinematic
results extend to the physical state space [1, 2]. However, in the absence of a com-
plete theory and even because the complete theory is not yet finished, it is useful
to know how the predicted discreteness in spatial geometry could be manifest in
observation.

Perhaps the first reaction to granular geometry is that the theory breaks Lorentz
invariance. Certainly broken Lorentz symmetry leads to dramatic effects that pro-
duce strong constraints (see [3] and [4]), but broken local Lorentz invariance does
not necessarily follow from discreteness – the discrete nature of quantum angular
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momentum does not imply the loss of rotational invariance. Furthermore, the rela-
tive velocity relating inertial reference frames depends on the metric and therefore
the measurements of areas of a surface in different frames are not directly compara-
ble [5]. More directly the causal set approach to quantum gravity shows that Lorentz
invariance and (space-time) discreteness are compatible.

Without the blunt effects of breaking local Lorentz invariance are there other
effects that might reveal the fundamental discreteness of spatial geometry? This
contribution reviews a model based on the kinematic predictions of discrete spatial
geometry in LQG and demonstrates that the answer is in the affirmative. The model
does not break local Lorentz invariance and yet there are effects at a mesoscopic
scale above the Planck scale [6]. The ‘lever arm’ that raises the scale is due to
the underlying asymmetry of the angle operator spectrum and the combinatorics of
an atom of spatial geometry. At this mesoscopic scale the local geometry differs
from flat three dimensional space leading to systematic shift in the distribution of
measured angles. To make such a model at this stage of development of LQG and
QFT in such a context requires assumptions. These are detailed in section 3.

To begin to test these assumptions we explore coherent states based on the ‘hy-
drogen atom of spatial geometry’, a single 4-valent node. Within the limitations of
this model we still find a hint of a lever arm, although in this context it is purely due
to the uncertainty relations among non-commuting operators.

2 Angle Operator

The angle operator was originally defined in [7] and described further in[6, 8, 9].
In this contribution we focus on the spatial atom. So, briefly, the angle operator is
defined on a truncation of the full kinematic Hilbert space, at a single spin network
node. The incident links to this node are partitioned into three sets, C1, C2, and
C3. Three left-invariant gravitational field operators Li

1, Li
2, and Li

3 are defined by
these partitions. (The notation is follows [10].) In terms of these gravitational field
operators for the partitions C1 and C2, the quantum angle operator is

θ̂(12) := arccos
Li

1Li
2

|L1| |L2|
, (1)

in which |L| =
√

L2. The sum ∑3
k=1 Li

k vanishes due to gauge invariance and the
exhaustive partitions. The partitioning of links incident to the node selects classes
of preferred intertwiner bases. These are labeled by trivalent nodes where each leg
of the node, or branch, connects all links in a single partition. This node is the
“intertwiner core”. On this class of bases the spectrum of the angle operator is



Granularity in Angle: Observability in Scattering Experiments 3

θ̂(12) | j1 j2 j3⟩ = θ(12) | j1 j2 j3⟩with (2)

θ(12) = arccos

(
j3( j3 +1)− j1( j1 +1)− j2( j2 +1)

2 [ j1( j1 +1) j2( j2 +1)]1/2

)
. (3)

For more detail see [6, 9]. With this angular spectrum there are two aspects of flat
spatial geometry that are hard to model. The spectrum is sparse for small angles
and the frequencies of eigenvalues is far from the sinθ distribution of polar angles
in flat, 3-dimensional continuum geometry. These are both manifestations of the
asymmetry in the angular spectrum. This asymmetry persists even when the spins
are very large [11, 8].

It is convenient to visualize the action of the angle operator on polyhedra, with
faces dual to the incident links [12]. The areas on the dual surfaces are simply related
to the spin j via ℓPl

√
j( j+1). The partitioning of C1, C2, and C3 induces a partition

of the dual surface into three surface areas S1, S2, and S3. The intertwiner core then
represents a decomposition of the polyhedron with “internal faces” determined by
ji.

The notation is as follows. Twice the sum of the representations on the links
incident to the node in partition Ck is denoted by the “flux” sk also denoted s. In the
dual surface picture this is the flux of spin through the respective surfaces, roughly
equal to the face areas. The total flux is the sum of the spins on all the incident
edges, denoted s. The quantities nk = 2 jk, the internal areas, uniquely specify the
intertwiner core, denoted |n⟩. The fluxes sk and core labels nk are distinct and satisfy
nk ≤ sk.

3 Combinatorial phenomenology

The phenomenological model of an atom of 3-geometry is based on the state space
described above and three, additional assumptions [6]: (1) The probability measure
on the space of intertwiner cores is uniform. (2) All incident links to the node are
spin-1/2. (3) The fluxes are large and semi-classical, 1 ≪ sk ≪ s3, k = 1,2. The
last assumption is motivated by the numerical studies of [11, 8] showing that the
asymmetry in the angular spectrum shifts the distribution away from the usual sinθ
distribution of polar angles. To recover the classical distribution it was necessary in
these studies to take large fluxes, and, in particular 1 ≪ s j ≪ s3, j = 1,2. Fluxes
s that satisfy these relations are called “semi-classical fluxes”. This means that we
omit terms O(1/si), O(1/ni), and O(ni/si). The assumption (2) is for simplicity,
although in statistical studies of large closed surfaces built from oriented areas the
spins are about one on average [13].

All physical processes involving angle that we currently observe are on very large
scales, many orders of magnitude above the Planck scale. These processes occur in a
large effective volume. Since volume scales as the (total flux)3/2 ≡ s3/2, the scaling
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defines an effective length ℓs = ℓPls3/2 or energy Ms = MPl/
√

s scale. The scale is
set in the reference frame used in the experimental analysis, such as the CM frame.

With these assumptions, the combinatorics of the model of a spatial atom can be
solved analytically [6]. The combinatorics for the number of states may be simply
related to a path counting problem with a known solution [11]. For single branch of
the basis |n⟩, the probability of an internal spin (or face area) n given a total flux of
s is

ps(n) =
n
s

exp
(
−n2

2s

)
. (4)

This is the Rayleigh distribution for a “distance” n covered in 2s steps in an isotropic
random walk with unit step size in two spatial dimensions. The total probability for
the internal state of the atom, ps(n), is just the product of three of these combinato-
rial factors. For large, semi-classical spins the normalized probability distribution is
simply expressed as

ps(θ) = ∑
n

δ (θ −θ(n))ps(n). (5)

The partition fluxes s determine a mixed state, ρs = ∑n ps(n)P|n⟩, where P|n⟩ is
the projector on the orthonormal basis of the intertwiner core. The sum is over
the admissible integers n such that ni ≤ si. The projector is P|n⟩ =| θI⟩⟨θI | where
|θI⟩= ∑n cθI (n) |n⟩. The probability of finding the angle eigenvalue θI in the mixed
state ρs is

Prob(θ = θI ;ρs) = tr (ρsPθI ) = ∑
n

ps(n)|⟨n | θI⟩|2 ≡ ps(θ). (6)

This procedure can be used to calculate ps(θ) for semi-classical fluxes

Ps(θ) :=
∫

d3n ps(n)|cθ (n)|2δ (θ −θ(n)) . (7)

The integration of equation (7) is straightforward [6]. The key step in the calcula-
tion is the identification of the “shape parameter” ε :=

√
s1s2/s3 that measures the

asymmetry in the distribution of angles. As ε → 0 the continuum distribution of
polar angles is recovered.

The resulting angular measure, when expressed in terms of Legendre polynomi-
als, and to O(ε3), is [6]

ρε(θ)≃ sinθ
(

1− 8
π

P1(cosθ)ε +
3
2

P2(cosθ)ε2
)
. (8)

The affect of the modified distribution of polar angles is that the “shape” of space is
altered by the atom; the local angular geometry differs from flat 3-space. The total
flux s determines the 3-volume of the spatial atom and thus an effective mesoscopic
length scale, ℓs =

√
sℓP, greater than the fundamental discreteness scale of ℓP. While

the the shape parameter ε is free of the Planck scale, the effective length scale,
determined by the total fluxes s, is tied to the discreteness scale of the theory. For
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instance, a shape parameter ε ∼ 10−3 requires a total flux of at least s ∼ 106, raising
the length scale at which this asymmetry would be observed to be nine orders of
magnitude above the Planck scale. Any angular measurement involving processes
at this scale would be affected by this modified distribution. Thus the angle spectrum
and the combinatorics of the intertwiner together provide a lever arm that lifts the
fundamental scale of the quantum geometry up to a larger, mesoscopic scale.

4 Example: Scattering

Let’s sketch how measurement of angle in an effective atom of geometry for a scat-
tering experiment works. (More detail may be found in [6].) Bhabha scattering is
convenient because the e+e− scattering process involves “point-like” fundamental
particles. The scattering cross section depends on angle and, in a theory that en-
compasses the quantum state of the geometry, scattering events are measurements
of the states that support the geometry. The affects of the discrete geometry will be
evident at some energy, modifying the QED vertex. Short distance modifications to
QED may be expressed in the Drell parameterization [14], which allows modifica-
tions to “switch on” at CM energies corresponding to the short distance structure at
the scale ℓs. Two kinematic effects were studied in [6], one due to the averaging over
angle and the other due to the modified distribution of angle in the state described
above. The latter effect is dominant. Assuming that the spatial geometry is homoge-
nous so that each scattering event occurs in the same state described in 3 then the
Bhabha scattering cross section is, using the Drell parameterization, [6](

dσ
dΩ

)
/

(
dσ
dΩ

)
QED

≃ 1∓
(

3s
Λ 2
±

)(
sin2 θ

3+ cos2 θ

)(
1+

8
π

cos(θ)ε + . . .

)
. (9)

A comparison between the model and the data, discussed in [6], shows that the
shape correction reduces the observed differential cross section at small angles and
increases it at large angles; the shape effect yields a systematic shift in the data.

To check the robustness of this prediction we must both check the framework
and the assumptions. In the next section we report on a check of the assumptions of
the model and study the most simple atom of geometry, a 4-valent node. We replace
the assumption of uniform probability with minimum relative uncertainty and allow
higher spin. This allows us to answer the question, Is there evidence of a lever arm
in the simplest 4-valent atom of geometry?

5 Coherent states and angle

To check the robustness of the above model we developed coherent states for the
simple 4-valent node, dual to a tetrahedron. Coherent states for semi-classical ge-
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ometries are based on (some flavor of) SU(2) coherent states, states that are peaked
around given directions, n̂, normal to the faces. These coherent states are sharply
peaked on the scalar products and thus angles, even for moderately large spin,
j > 100. With such low spin there is no significant lever arm. However the coher-
ent states require classical information, the directions n̂. To avoid adding additional
assumptions about these classical directions to our model, we constructed coherent
states only from quantum information intrinsic to the atom of geometry.

It has been known for some time that the state of the atom contains enough infor-
mation to establish dimension of space and the scalar products. The spin geometry
theorem of Penrose and Moussouris [15, 16] states that for low relative uncertainties
– large spin – the state of the geometric atom yields vectors in Euclidean 3-space.
Furthermore, the proof is constructive. By minimizing the relative uncertainties, the
distribution of directions n̂ is determined. We can construct states that model semi-
classical geometry using only information intrinsic to the atom [17].

In this construction the directions in 3-space are well-defined when the relative
uncertainties of scalar products are minimized. More precisely, when the state is “δ -
classical” ⟨∆Lk ·Ll⟩/ jk jl < δ , pairs k, l, then directions associated to the faces may
be defined. The angles between normals are determined by the scalar products of
these vectors. The spin geometry theorem states that there exists a δ for any approx-
imation of vectors 3-dimensional Euclidean space. We constructed these vectors for
a tetrahedron.

We set the maximum spin, typically 20, and took a superposition over all states
of the atom of geometry, with amplitudes determined by a complex gaussian. We
fixed the parameters of the state (peak value, width, and phase) by minimizing the
relative uncertainties. This analysis is straightforward in the basis of one of the angle
operators. For the other angles, which do not commute with one another, one must
employ recoupling theory. As this results in a lengthy expression to minimize, we
used Mathematica to minimize the relative uncertainties.

This process of minimizing δ -constraints for the independent angles yields well-
defined directions but low-volume, “squashed” geometries. This is expected since
the minimization procedure essentially extremizes the cosine of the angle between
outgoing normals times a spin factor, held fixed by our choice of maximum spin.
Minimizing the resulting sine yields angles are near 0 and π , producing an elon-
gated shape of the atom (“squashed”), with angles near 0 and π . The minimization
produces a distribution of angles that is far from the distribution of classical polar
angles.

However simultaneously minimizing the relative uncertainties and maximizing
the volume of the atom produces a distribution of angles peaked around the center
of the classical distribution, at the cost of increased relative uncertainty in the an-
gle (i.e. larger δ ’s and a correspondingly worse approximation to the angles of the
classical tetrahedron). We see that the “cost” of modeling the classical distribution
of angles is an increase in relative uncertainty. As we know from the spin geometry
theorem to reduce the uncertainty further we need to increase the total flux, raising
the effective scale of the atom of geometry. This “lever arm” is simply a manifes-
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tation of the familiar uncertainty relations of non-commuting operators, rather than
from the combinatorics of more complex states.

This tetrahedron study shows that (1) It is possible to use quantum information
intrinsic to the state to define the coherent states. (Unfortunately the computation
grows unwieldily for higher spin and high valence atoms.) (2) There is a “short”
lever arm in that the classical distribution of angle is achieved for atoms above
the Planck scale. But this lever arm is too short to raise the scale of the effects
into experimentally accessible regimes. However, the lever arm in 3 arises from the
combinatorics arising in complex atoms atoms of geometry.

6 Discussion

This contribution reviews a model that explores effects arising from combinatorial
structures in the deep spatial quantum geometry of LQG [6]. The model, based on
assumptions in 3, relies on the combinatorics of a discrete model of spatial geometry,
a single atom of spatial geometry, the spin network node. This model shows that
potentially observable effects of quantum geometry need not be tied to violations of
local Lorentz symmetry and that a scale above the fundamental scale of the theory
can arise out of the combinatorics of the state.

To test the assumption of the uniform measure we developed coherent states
based on information intrinsic to the simplest atom, which is dual to a tetrahedron.
Using the spin geometry theorem we developed coherent states of the polyhedron
and found evidence for a lever arm. In this case the short lever arm is due to the
non-commutivity of operators, rather than the combinatorics of the state. However,
this is a very simple atom of geometry that does not have the combinatoric richness
of complex higher valence atoms. Work on modeling these more complex structures
is ongoing.

Finally, it is important to note that work remains on modeling the vertex mod-
ifications in field theory. One possibility is to model the effective metric in, e.g.

L ′
δ (x) =−e

∫
d4xψ̄(x)γµ ψ(x)gµν

δ (x− z)Aν(z). (10)

using spin foam techniques. It remains to be seen whether this shape-corrected QED
vertex yields the simple shape corrections discussed here.
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