
Stability of marginally outer trapped surfaces
and geometric inequalities

Marc Mars

Abstract Marginally outer trapped surfaces (MOTS) admit a notion of stability
that in many respects generalizes a similar notion for minimal hypersurfaces. Sta-
ble MOTS play an interesting role in a number of geometric inequalities involving
physical parameters such as area, mass, charge or, in the axially symmetric case,
angular momentum. Some of those inequalities are global in nature while others are
local, with interesting relationships between them. In this lecture the notion of sta-
ble MOTS will be reviewed and some of the geometric inequalities involving stable
MOTS will be described.

1 Introduction

Geometric inequalities play a fundamental role in gravitation because they provide
information on the relationship between physically relevant quantities in a robust
way, independently of the details of the particular spacetime under consideration.
It is often the case that not even field equations are necessary for the validity of
such inequalities and that only energy conditions are required, which make their
range of validity very broad and transverse to several theories of gravity. One of the
most fundamental geometric inequalities in gravitation is the Positive Mass The-
orem which, as is well-known establishes that the ADM mass is non-negative for
any asymptotically flat spacetime satisfying the dominant energy condition (DEC),
i.e. such that the Einstein tensor contracted with any pair of future directed causal
vectors gives a non-positive quantity. Another very important geometric inequality,
which so far has been proved only in special circumstances is the Penrose inequality
[1]. In the asymptotically flat case, this inequality conjectures that the total ADM
mass M satisfies the inequality
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|Smin| ≤ 16πM2.

where |Smin| is the minimal area needed to enclose a given weakly future rapped
surface S, i.e. a closed, spacelike, codimension-two surface with future directed,
causal mean curvature vector. The notion of “enclosing” also needs a definition, see
e.g. [2] for details. The Penrose inequality is a strengthening of the positive mass
theorem when there are trapped surfaces present. In turn, the Penrose inequality can
be strengthened when the spacetime is charged and the total charge Q cannot be
radiated away (e.g. in electrovacuum, or when all matter present in the spacetime is
electrically neutral). In this case, the conjectured inequality becomes [3]

|Smin| ≤ 8π
(

M2 − Q2

2
+
√

M2 (M2 −Q2)

)
.

It is clear that, in order for this inequality to even make sense, it is necessary that
the total ADM mass satisfies the bound M ≥ |Q|. This inequality was proved in
[4] (see also [5] for a mathematically complete argument) and provides a direct
strengthening of the positive mass theorem in charged spacetimes, irrespectively of
whether a weakly future trapped surface is present in the spacetime or not.

Another global charge in asymptotically flat spacetimes is the ADM angular mo-
mentum J. In general, angular momentum can be radiated away by gravitational
waves, so in general no strengthening of the Penrose inequality involving angular
momentum should be expected (this is because the physical argument leading to the
Penrose inequality involves, on the one hand, the weak cosmic censorship hypothe-
sis and, on the other, the asymptotic values of mass, charge and angular momentum
of the black hole that forms during the collapse). There is one interesting case, how-
ever, when angular momentum cannot be radiated away, namely when the spacetime
is axially symmetric. Thus, in this case (and assuming again that electric charge is
either absent or cannot be radiated away) the Penrose inequality can be strengthened
to (see [6, 7] for a discussion)

|Smin| ≤ 8π
(

M2 − Q2

2
+
√

M4 −Q2M2 − J2

)
:= FQ,J(M), (1)

where the last equality defines a function of M for each choice of Q and J. As before,
in order for this inequality to make sense, it becomes necessary that M4 −Q2M2 −
J2 ≥ 0 or, equivalently,

M2 ≥ 1
2
(Q2 +

√
Q4 +4J2).

This is a strengthening of the positive mass theorem that should be valid for
any asymptotically flat, axially symmetric spacetime with conserved total electric
charge. This result has been proved whenever the spacetime admits a maximal (i.e.
with second fundamental form of vanishing trace), axially symmetric slice with two
asymptotically flat ends, first in vacuum [8, 9] and then in electrovacuum [10, 11].
The assumption of having more than one asymptotically flat end is made because,
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in electrovacuum, the total electric charge and the total angular momentum can only
be non-zero in the presence of non-trivial topology. In the case of vacuum with an
arbitrary number of asymptotically flat ends, the inequality is not yet settled but a
closely related inequality has been proved in [12], which possibly reduces to the
previous one depending on the values of a certain functional defined on stationary
and axially symmetric asymptotically flat spacetimes (see the review [13] for many
more details).

All the geometric inequalities discussed so far are global in nature because they
involve the total ADM mass, and the charge and angular momentum are also global
quantities defined at infinity. Even the area term in the Penrose inequality is global
quantity because of the need of taking the minimal area enclosure of the weakly
future trapped surface. It is straightforward to check that FQ,J is an increasing func-
tion of M. Its minimum value is 4π

√
Q4 +4J2. It therefore follows that, whenever

the minimal area enclosure |Smin| satisfies |Smin| ≤ 4π
√

Q4 +4J2 then the Penrose
inequality (1) is satisfied automatically. It follows that this inequality is non-trivial
only if

|Smin| ≥ 4π
√

Q4 +4J2.

In particular, when the total charge is non-conserved or vanishes identically, this
inequality becomes

|Smin| ≥ 8π|J|

and when the total angular momentum is non-conserved, the inequality reads

|Smin| ≥ 4πQ2.

These inequalities are still of global nature, but now it makes sense to try and see
whether a local version of them is still valid. Indeed, one may think of replacing the
minimal area enclosure |Smin| by the area |S| of the weakly future trapped surface
itself. Moreover, the notion of total charge enclosed by a closed, orientable surface
makes sense, and in the axially symmetric case, the presence of a Killing vector
allows one to define the Komar angular momentum of any closed, orientable surface.
Moreover, in electrovacuum there is a modification [14] of the Komar definition of
angular momentum involving the electromagnetic field which provides a conserved
quantity in the sense that it gives an object depending only on the homology class
of the surface under consideration.

There has been very interesting and remarkable progress in recent years towards
the proof of local inequalities of this type on certain surfaces. They were first found
in the case of stationary and axially symmetric black hole horizons admitting arbi-
trary matter outside the horizon but such that a neighbourhood of the horizon itself
is vacuum or electrovacuum. The first result along those lines was for the degen-
erate case (i.e. when the surface gravity of the horizon vanishes) [15]. The non-
degenerate case for vacuum horizons was dealt with in [16]. Finally, the inequality
in the charged, rotating case and for electrovacuum horizons was solved in [17].
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These results had important implications in the problem of non-existence of station-
ary and axially symmetric two-black hole configurations [18, 19, 20, 21] (see also
G. Neugebauer’s contribution to this volume).

Remarkably, a purely local version of this inequality where only properties of
suitable spacelike two-surfaces are used has also been obtained recently. The first
case, proved by Dain and Reiris [22] involved stable minimal, axially symmetric
surfaces embedded in maximal, axially symmetric hypersurfaces in a vacuum space-
time. In this setting, the universal inequality |S| ≥ 8π|J| was proved, where J is the
Komar angular momentum. This inequality was then extended [23] to arbitrary, axi-
ally symmetric, stable marginally outer trapped surfaces (defined below) embedded
in a spacetime with arbitrary matter contents as long as the dominant energy condi-
tion is satisfied. The case with electric charge (and no angular momentum so that no
need to restrict oneself to axially symmetric situations) was analyzed in [24] where
the inequality |S| ≥ 4πQ2 was proved for suitable surfaces. The case involving both
charge and angular momentum has been proved recently in [25].

The key underlying property of the local versions of the inequality is the notion
of stability, both for minimal hypersurfaces and for marginally outer trapped sur-
faces. The aim of this lecture is to review the notion of stability for marginally outer
trapped surfaces and discuss some of its consequences. Then, I will present in more
detail the various inequalities and explain how does stability enter into the argu-
ments. The final aim will be to relate the black hole-type inequalities to the purely
local inequalities by summarizing recent results [26] on the stability properties of
Killing horizons.

2 Basics on the geometry of spacelike surfaces.

Our framework will be a four-dimensional spacetime (M,g), which we will take to
be oriented and time-oriented. Scalar product with the spacetime metric will be de-
noted by ⟨ , ⟩ and S will refer to a closed (i.e. compact without boundary), spacelike,
two-dimensional, orientable, connected, embedded surface in (M,g) (simply sur-
face from now on). The normal space to S at any of its points is a Lorentzian vector
space. The collection of all normal spaces is a vector bundle over S that admits two
global, smooth, nowhere zero cross-sections {ℓ,k} satisfying ⟨ℓ,ℓ⟩ = 0, ⟨k,k⟩ = 0
and ⟨ℓ,k⟩ = −1. We always take ℓ (and hence k) to be future directed. These sec-
tions are defined uniquely up to the usual boost freedom ℓ→ Fℓ, k → F−1k, where
F is a smooth, positive scalar function on S. The (positive definite) induced metric
on S will be denoted by h and the corresponding covariant derivative by D. The null
extrinsic curvatures are defined, as usual, by χℓAB ≡ ⟨eA,∇eBℓ⟩, χk AB ≡ ⟨eA,∇eB k⟩,
where {eA} is a basis of the tangent space of S. The null expansions are the traces
of these tensors, i.e. θℓ = trh(χℓ), θk = trh(χk). A relevant geometric object in the
following is the mean curvature vector, defined in terms of the null expansions by
H =−θℓk−θkℓ. It is well-known (and straightforward) that this vector is indepen-
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dent of the choice of null basis {ℓ,k}. Finally, the normal bundle admits a canonical
connection with connection one-form given by sA ≡−⟨k,∇eAℓ⟩ in the basis {ℓ,k}.

The mean curvature is fundamental, among other things, because it contains full
information on how the area of the surface changes to first order under general
deformations. Denoting by δξ |S| the first order variation of area along a deformation
vector ξ , the following identity holds

δξ |S|=
∫

S
⟨H,ξ ⟩ηh,

where ηh is the metric volume form of (S,h). Hence, when H is future causal then
the area of S does not increase for any future causal deformation ξ . This is generally
taken as a clear signal of the presence of a strong gravitational field. A surface S with
this property is called weakly future trapped.

3 Marginally outer trapped surfaces and stability

As just mentioned, the future causal character for the mean curvature is sufficient
to signal the presence of a strong gravitational field. However, if the surface admits
a well-defined notion of exterior (for instance when S is contained in a spacelike,
asymptotically flat hypersurface and separates this hypersurface into an asymptot-
ically flat exterior and a compact domain), then a non-increase of area along the
exterior future null cone may also be taken as convincing indication that the gravi-
tation field on the surface is strong. Such surfaces are defined by the property that
θℓ ≤ 0, where ℓ is the future null normal pointing into the exterior domain.

The borderline case is given by surfaces satisfying the equality case θℓ = 0. It
turns out that studying this borderline case is interesting even when there is no
clearly distinguished notion of exterior. This leads to the following standard defi-
nition:

Definition 1. A marginally outer trapped surface (MOTS) is a surface which satis-
fies either θℓ = 0 or θk = 0 everywhere (after renaming we always take θℓ = 0).

From the general expression for the first variation of area it follows that MOTS are
stationary points for the area functional with respect to arbitrary variations tangent to
ℓ. Stationary points of any functional call immediately for analyzing their behaviour
under second order variations. In this case, the result is a direct consequence of the
Raychauduri equation and gives

δ 2
ψℓ|S|=−

∫
S

ψ2 (G(ℓ,ℓ)+ |χℓ|2
)

ηS,

where G is the Einstein tensor of the spacetime and | · | is the norm of tensors on S
with the metric h. In contrast to the case of minimal hypersurfaces in Riemannian
ambient manifolds, the second order variation does not define a differential operator
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acting on ψ . Moreover, it is always non-positive definite, provided the spacetime
satisfies the null energy condition NEC (G(ℓ′, ℓ′) ≥ 0 for any null vector ℓ′). Thus,
the second variation of area along the direction ℓ for MOTS does not provide with
any useful notion of stability. A suitable alternative is to use first variations of θℓ
(which vanishes for a MOTS) along arbitrary normal directions not tangent to ℓ.
To be more precise, select a normal direction to S nowhere tangent to ℓ. This de-
fines uniquely a vector v satisfying ⟨ℓ,v⟩ = 1. Consequently, it can be decomposed
uniquely as v = −k +V ℓ where V is a scalar function on S. In other words, we
parametrize the collection of directions orthogonal to S and nowhere tangent to ℓ by
a real function V : S → R via the generator v defined above.

Note that V may a priory have any value. The sign of V at any given point p ∈ S
is directly tied to the causal character of the normal direction selected at p. If V > 0
then this direction is spacelike, if V = 0 the direction is null and if V < 0 the direction
is timelike. It is also convenient to define the vector v⋆ := k+V ℓ, which defines a
second normal direction. This direction is linearly independent to the previous one
except when v is null, in which case they coincide. In any other case the causal
character of v⋆ is always opposite (in the sense of spacelike vs. timelike) to the
causal character of v. In particular, v⋆ is future causal if and only if v is “achronal”
(i.e. spacelike or null or, equivalently, V ≥ 0).

Given a fixed direction defined by v we can perform variations restricted to this
direction. Any such variation is defined by a vector ξ = ψv, where ψ : S → R.
The first order variation of θℓ along ψv was first computed by Newman [27] (the
calculation was performed assuming implicitly that ψ ̸= 0 everywhere, but the result
is generally valid, c.f. [28]). The resulting expression gives a differential operator
Lv acting ψ via the definition Lv(ψ)≡ δψvθℓ. Its explicit expression is

Lv(ψ) =

−∆hψ +2sADAψ +
(R(h)

2
−G(ℓ,v⋆)−V |χℓ|2 − sAsA +DAsA

)
ψ, (2)

where ∆h is the Laplacian of (S,h) and R(h) is the curvature scalar of the metric h.
As discussed in detail in [28] this operator is elliptic and, in general, not self-

adjoint. However, any elliptic operator on a compact manifold (or on a bounded do-
main with Dirichlet boundary conditions) admits a principal eigenvalue λv. This is a
real eigenvalue (i.e. such that there exists a real function ϕv satisfying Lv(ϕv)= λvϕv)
with the property that any other eigenvalue (which will be complex in general) sat-
isfies Re(λ )> λv. Moreover, as in the self-adjoint case, the principal eigenfunction
ϕv does not change sign and hence can be taken to be positive everywhere. For self-
adjoint operators, the principal eigenvalue admits a characterization in terms of the
so-called Rayleigh-Ritz quotient which is very useful, firstly because it provides up-
per bounds for the principal eigenvalue and secondly, and even more importantly,
because it gives lower bounds for certain integral functionals acting on arbitrary
functions. This latter property is the key for translating sign conditions on the prin-
cipal eigenvalues into useful analytic inequalities that, in turn, can be used to derive
geometric properties of the surface. This is crucial, e.g., for studying stable mini-
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mal hypersurfaces in Riemannian manifolds. Such surfaces have the property that
their own stability operator, which is now self-adjoint, has a non-negative principal
eigenvalue.

The Rayleigh-Ritz characterization is no longer true for non self-adjoint opera-
tors. Given its importance, it is reasonable to ask whether there exists any analogue
to this characterization valid for any elliptic operator. Donsker and Varadhan [29]
found a number of characterizations of the principal eigenvalue of the min-max
type, i.e. involving a minimization of a certain class of suprema. Such characteri-
zations are, in general, difficult to work with. In [28] one of these characterizations
was elaborated further and a Rayleigh-Ritz type characterization for the principal
eigenvalue of any elliptic second order operator was found. In order to describe
it, recall that any one-form in a compact Riemannian manifold without boundary
can be decomposed as the sum of the differential of a function f plus a divergence-
free one-form. Such decomposition is usually called Helmholz decomposition in the
physics literature. Recall that this decomposition is unique up to an additive constant
in f provided the manifold is connected.

In the case of the stability operator Lv, the characterization of λv obtained in [28]
reads as follows.

Proposition 1. Let Lv be the stability operator (2). Decompose the normal connec-
tion one-form sA according to the Helmoltz decomposition as sA = DA f + zA, where
zA is divergence-free. Then the principal eigenvalue of Lv is given by

λv = inf
u>0

∫
S

(
|Du|2 +

(
R(h)

2 −G(ℓ,v⋆)−V |χℓ|2
)

u2 −|dωu + z|2u2
)

ηh∫
S u2ηh

(3)

where ωu is any solution of

−∆hωu −
2
u

DAωuDAu =
2
u

zADAu. (4)

It is straightforward to check that, given any positive function u on S, the partial
differential equation (4) always admits a solution, which is unique up to an additive
constant.

An immediate consequence of this result is the so-called “symmetrized inequality
along v” proved by Galloway and Schoen [30] using explicit estimates,∫

S

(
|Du|2 + 1

2
R(h)u2

)
ηh ≥

∫
S

(
λv +G(ℓ,v⋆)+V |χℓ|2

)
u2ηh. (5)

Indeed, by dropping the term |dωu + z|2u2 in (3) the right-hand side is never de-
creased, and hence so does infimum, which leads immediately to (5).

The stability operator allows us to define a notion of stability for MOTS [28],
which generalizes a similar notion for minimal hypersurfaces.
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Definition 2. A MOTS S is stable along v if and only if the principal eigenvalue λv
of the stability operator satisfies λv ≥ 0. S is strictly stable along v if and only if
λv > 0.

One of the consequences of this definition is given by the following lemma,
which links the stability of a MOTS with the existence of suitable variations which
increase the value of the outer null expansion.

Lemma 1. A MOTS S is stable along v if there exists an outward variation ψv (ψ ≥
0, ψ ̸≡ 0) such that δψvθℓ ≥ 0. S is strictly stable if, in addition, δψvθℓ > 0.

Although, by construction, there is a stability operator (and a notion of stability)
for each direction v, the dependence of Lv on v is very simple, namely Lv = L−k −
W V , where W is defined as W := (G(ℓ,ℓ)+ |χℓ|2). Note that under the NEC W ≥ 0
and hence stability improves when v is tilted away from ℓ (i.e. when V is made larger
at every point). In fact, when W ̸≡ 0, there always exists a direction sufficiently
tilted away from ℓ for which the principal eigenvalue is positive, and hence the
MOTS is strictly stable along this direction. However, it turns out that the stability
of the MOTS along a direction v gives, in general, useful information only when
the direction v is achronal. This is because, the terms G(ℓ,v⋆) and V |χℓ|2 are non-
negative (under the NEC) only when V ≥ 0, i.e. when v is spacelike or null at every
point. This leads to the following definition, spelled out in [23] and closely related
to the notion of future outer trapping horizon defined by Hayward [31].

Definition 3. A MOTS S is spacetime stable if it is stable along an achronal direc-
tion v.

It is now straightforward to check that, under the NEC, S is spacetime stable if and
only if it is stable along −k. Since the null direction −k is privileged as a transverse
direction for the MOTS, we will write λ−k simply as λ−.

4 Area-charge-topology inequalities for MOTS

As discussed in the Introduction, a class of local inequalities exists for suitable sur-
faces relating the area and the total charge enclosed by the surface. If the surface
has non-trivial topology, its genus (recall that our surfaces are two-dimensional,
connected and orientable, so that their topology is uniquely determined by their
genus) also enters into the inequality. The basic assumption made in this context is
that the energy-momentum contents of the spacetime splits into an electromagnetic
field and the rest of matter in such a way that this rest satisfies the dominant en-
ergy condition. Allowing also a cosmological constant Λ , the Einstein tensor takes
the form (assuming we are in General Relativity) Gµν +Λgµν = T EM

µν +T mat
µν , where

T EM
µν = 2(Fµα F α

ν − 1
4 gµν Fαβ Fαβ ) is the energy-momentum tensor of the electro-

magnetic field Fµν and T mat is arbitrary except for the condition of satisfying DEC.
The electric and magnetic charges on S are defined as
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QE =
1

4π

∫
S

F(ℓ,k)ηh, QM =
1

4π

∫
S

F⋆(ℓ,k)ηh,

where F⋆ is the Hodge dual of F . We now assume that S is a MOTS. If we insert
u = 1 in the symmetrized inequality (5) along −k (i.e. with V = 0) it follows

4π(1−g)≥ (λ +Λ) |S|+
∫

S
(F(ℓ,k))2 +(F⋆(ℓ,k))2ηh (6)

Now, following [24], the Hölder inequality implies the inequality
∫

S f 2 ≥ |S|−1(
∫

s f )2

valid for any L2 function f . Thus, (6) implies

4π(1−g)≥ (λ +Λ)|S|+16π2|S|−1(Q2
E +Q2

M).

This inequality including the cosmological constant, arbitrary topology of S and the
principal eigenvalue has been obtained in [32], where a number of consequences
have also been derived. Two immediate consequences are the following:

Assume that S is spacetime stable. Since, under the assumptions above, the space-
time satisfies the NEC (irrespectively of the sign of Λ ) it follows that S is stable
along the direction −k, i.e. λ− ≥ 0. If we assume further that Λ ≥ 0, then it follows
immediately that S must be of spherical or toroidal topology. This recovers a well-
known theorem on the topology of MOTS due to Hawking [33]. This theorem has
been generalized to higher dimensions in [30] where it was shown that the Yamabe
type of any stable MOTS must be non-negative. The case of vanishing Yamabe type
(i.e. toroidal topology in the case of four dimensions) has been shown to be very
rigid in [34] and to be excluded when the MOTS satisfies suitable barrier properties.

If S is spacetime stable and there is a negative cosmological constant, then (7)
implies an upper bound on the genus of S, namely g ≤ 1− |S|Λ

4π . This bound was first
obtained in [35].

For the area-charge inequality, (7) immediately implies that, as long as S is space-
time stable and Λ ≥ 0, then |S| ≥ 4π(Q2

E +Q2
M), as first proved in [24]. This inequal-

ity, in turn, is a generalization of a previous result by Gibbons which establishes this
inequality in the case of minimal surfaces embedded a time-symmetric slice [36].

5 Axially symmetric MOTS and angular momentum

We next discuss local geometric inequalities involving angular momentum. As men-
tioned in the Introduction, this case requires the surfaces to be axially symmetric in
order to have a proper definition of angular momentum. In principle, one may think
that this entails restricting oneself to axially symmetric spacetimes. In fact, fewer re-
quirements are needed and the following definition, essentially put forward in [23],
is sufficient for the purpose of writing down and proving the desired inequalities:

Definition 4. A MOTS S is axially symmetric if there exists a vector η tangent to S
satisfying
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1. Lη h = 0.
2. Lη s = 0, for some choice of basis {ℓ,k}.
3. η commutes with the stability operator Lv for some choice of v.

It is clear that if the spacetime (M,g) admits an axial Killing vector η and η is
tangent to S, then the S is also axially symmetric according to this definition.

The angular momentum J of an axially symmetric MOTS is then defined by

J(S) :=
1

8π

∫
S

s(η)ηS.

It is straightforward to check that this definition is independent of the choice of basis
{ℓ,k}. Nevertheless, for some expressions below, it is necessary to restrict the basis
to satisfy point 2. in definition 4. We will do so from now on.

The following theorem due to Jaramillo, Reiris and Dain [23] establishes a re-
markable inequality involving the area and the angular momentum of an axially
symmetric MOTS. The only requirement is that the MOTS is spacetime stable and
that energy-momentum contents of the spacetime satisfies the dominant energy con-
dition. It is therefore a very general and robust inequality which reveals a deep
connection between the rotation and the shape of quasi-local black holes in four
spacetime dimensions.

Theorem 1. Let (S,h) be an axially symmetric, two-dimensional MOTS, stable with
respect to an achronal direction v in a spacetime satisfying DEC. Then

|S| ≥ 8π|J|. (7)

Moreover, equality can only happen if the following five conditions are simultane-
ously satisfied:

(i) S is marginally stable,

(ii) h = |J|
(
1+ cos2 θ

)
dθ 2 +

4|J|sin2 θ
1+ cos2 θ

dφ2,

(iii) G(ℓ,k) = 0 on S,

(iv) z =
2J sin2 θ

|J|(1+ cos2 θ)2 dφ ,

(v) If v is spacelike then G(ℓ,ℓ) = 0 and χℓ = 0.

The equality case corresponds to the geometry of the extreme Kerr horizon, i.e.
the induced metric on any spacelike section of the degenerate horizon of the Kerr
metric satisfying M2

ADM = |JADM|. Previous to Theorem 1, the same inequality had
been proved by Dain and Reiris [22] for minimal surfaces embedded in maximal
slices of a vacuum spacetime

In the following I will describe the basic steps involved in the proof of this result.
The argument has two parts. The first one consists in finding an inequality valid for
arbitrary functions on S and applying it to an appropriate function defined in terms of
the geometry of S. The second step consists in showing that the resulting inequality
can be related to the angular momentum, to conclude finally that (7) holds.
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Step 1 was accomplished in [23] as a consequence of the spacetime stability
of S by performing suitable direct estimates. However, as mentioned before, stable
MOTS satisfy general inequalities given by the Rayleigh-Ritz type characterization
described in Proposition 1. This allows us to describe step one as follows.

First, using u = 1 in the general inequality (3) (notice that for u = 1, the solution
to equation (4) is ωu = const) and the Gauss-Bonnet theorem shows that the genus
of the surface must be positive, or else zA = 0, which would imply J = 0 and hence a
trivial area-angular momentum inequality. So, only the spherically symmetric case
needs to be considered. In this setting axisymmetry implies that the divergence-
free one form zA in the Helmholz decomposition of the connection one-form sA is
proportional to the Killing vector η (with its indexes lowered with the metric h).
Consequently, the source term in equation (4) vanishes for any choice of axially
symmetric u. The corresponding solution is again ωu = const. Since restricting the
class of functions u in (3) to being axially symmetric cannot decrease the infimum,
it follows from stability that∫

S

(
|Du|2 + R(h)

2
u2
)

ηh ≥
∫

S

(
G(ℓ,v⋆)+V |χℓ|2 + |z|2

)
u2ηh

≥
∫

S
|z|2u2ηh, (8)

where the second inequality follows because
(
G(ℓ,v⋆)+V |χℓ|2

)
u2 is non-negative

under the assumptions of the theorem. Now, it is simple to see that the metric h can
be written in the form (c.f. [22])

h =
1

cosh2 τ

(
e2ce−σ(τ)dτ2 + eσ(τ)dφ2

)
, −∞ < τ < ∞, 0 < ϕ ≤ 2π, (9)

where c is a constant related to the total area by |S| = 4πec. Regularity on the axis
of symmetry (i.e. where τ →±∞) imposes the following asymptotic behaviour on
σ(τ),

lim
τ→±∞

σ = c, lim
τ→±∞

dσ
dτ

= 0.

Now, a key insight of Dain and Reiris [22] was to use the function u = e−
σ
2 in the

analytic inequality (8). This gives an inequality which involves only σ and zA. The
second part of the proof consists in showing that this leads to an inequality involving
only J and the area |S| in such a way that all details of the function σ(τ) and zA(τ)
disappear. To discuss this second part we use a simplified version of an argument
due to [21], which, in turn, is a simplification of the original argument in [37] where
a the absolute minimum of a renormalized energy of a harmonic map was computed.

First of all we define a function Y (τ) (up to an arbitrary additive constant) by the
equation z(η)ηh =

1
2

dY
dτ dτ ∧dφ . From the definition of angular momentum we have

8J = lim
τ→∞

(Y (τ)−Y (−τ)).
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Now, inserting u = e−
σ
2 and the expression for zA in terms of Y (τ) in (8) and com-

puting explicitly the curvature scalar for the metric (9) it is straightforward to see
that the stability inequality becomes

0 ≥
∫

S

[
1

X2

((
dX
dτ

)2

+

(
dY
dτ

)2
)
−4

]
dτdϕ (10)

where X(τ) has been defined as X = |η |2 (i.e. X = eσ cosh−2(τ)). Now we can view
the first term in the integrand as the energy-density of a path γ(τ) ≡ {X(τ),Y (τ)}
in the hyperbolic space (H2,gH2 = dX2+dY 2

X2 ). Note that, since the variable τ takes
values on the whole real line and X(τ)→ 0 when |τ|→∞ the total energy of the path
diverges (this simply reflects the fact that while the function in the right-hand side
of (10) is integrable on S, this property is obviously not true for the constant term
in the expression). Rewriting the total integral as a definite integral from τ =−L to
τ = L and sending L to infinity, inequality (10) becomes, after performing the trivial
angular integration,

0 ≥ lim
L→+∞

(∫ L

−L
gH2 (γ̇, γ̇)dτ −8L

)
,

where dot means derivative with respect to τ . We now apply once again the Hölder
inequality in the form

∫ L
−L gH2 (γ̇ , γ̇)dτ ≥ 1

2L (
∫ L
−L

√
gH2 (γ̇, γ̇)dτ)2 and use the ob-

vious property that the total length of any curve if never smaller than the distance
between their initial and final points to rewrite the stability inequality as

0 ≥ lim
L→+∞

(
1

2L
dist2H2 [γ(L),γ(−L)]−8L

)
. (11)

Now, the distance function between two arbitrary points (X1,Y1) and (X2,Y2) in the
Poincaré upper-half plane is well-known to be [38]

distH2 [(X1,Y1),(X2,Y2)] = arccosh
[

1+
(Y2 −Y1)

2 +(X2 −X1)
2

2X1X2

]
.

The limit L → +∞ in (11) is straightforward to obtain after using σ(±L)→ c and
Y (L)−Y (−L)→ 8J and gives

0 ≥ 8ln
(

8π|J|
|S|

)
⇐⇒ |S| ≥ 8π|J|,

which proves the inequality. The statements regarding the equality case are also
straightforward in this framework and follow by imposing that all inequalities along
the process become equalities. In particular, the curve γ(τ) must be a parametrized
geodesic in (H2,gH2). This fixes the metric h and zA to be those in the extreme Kerr
geometry. This proves points (ii) and (v) in the theorem. The rest follows directly
from the non-negative terms discarded in the stability inequality.



Stability of marginally outer trapped surfaces and geometric inequalities 13

6 Area-angular momentum inequality for black holes

As mentioned in the Introduction, the first examples of area-angular momentum in-
equalities were obtained for black holes. The assumptions in this setting were that
the spacetime is stationary and axially symmetric and that it contains a Killing hori-
zon. Moreover, the spacetime was assumed to be vacuum in a neighbourhood of the
horizon, but matter was allowed outside the black hole. The first case treated in the
literature assumed the Killing horizon to be degenerate, i.e. with vanishing surface
gravity. In this setting, Ansorg and Pfister [15] were able to show that the inequal-
ity |S| = 8π|J| was universally valid. Here |S| is the area of any axially symmetric
spacelike section of the Killing horizon. The non-degenerate case was considered
in [16] where the inequality |S| > 8π|J| was proved under the additional condition
that the black hole is subextremal. The definition of subextremal is due to [39] and
requires the existence of a future directed null vector k transverse to the Killing hori-
zon for which the inequality δkθξ < 0 holds, where ξ is the Killing vector which
generates the Killing horizon. It is clear from the definition of strict stability of
MOTS that a Killing horizon is subextremal if and only if all of its spacelike sections
are strictly stable along the transverse direction k. The condition of subextremality
was used in [16] by working in an Eddington-Finkelstein advanced extension of the
following metric in Boyer-Lindquist type coordinates

ds2 = µ̂
(

dR2

R2 − r2
h
+dθ 2

)
+ ûsin2 θ (dφ −ωdt)2 − 4

û

(
R2 − r2

h
)

dt2,

where the Killing horizon is located at R = rh. Imposing the condition δmθξ < 0,
where m is proportional to ∂R in Eddington-Finkelstein coordinates, and discarding
a number of positive terms, the actual ”subextremality” assumption made by the
authors was ∫

S0

∂R(ûµ̂)|R=rh sinθdθ > 0,

where S0 is a section of the Killing horizon corresponding to a constant coordinate
time t̂ in the Eddington-Finkelstein advanced coordinate system. This equality is
certainly implied by the geometric subextremality condition by Booth and Fairhurst,
but it is not equivalent to it and, in principle, it is weaker. The purely local inequality
in Theorem 1 requires stability, but not strict stability, so the connection between the
two inequalities is not immediately obvious. The proofs are also quite different, so
it became a problem of interest to try and relate the purely local and the black hole
versions of the area-angular momentum inequality. A first step along this direction
was made in [21] where the comparison was focused on the relationship between
the proof in the minimal surface case in [22] and the behaviour of the Killing hori-
zon on its bifurcation surface. However, no geometrically clear reason of why both
inequalities work in seemingly different regimes was given. In [26] a detailed study
of the stability properties of Killing horizons was performed. As a by product, a
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clear relationship between the two types of area-angular momentum inequality was
obtained. The next section is devoted to reviewing these results briefly

7 MOTS and Killing horizons

Recall that, in a spacetime (M,g) admitting a Killing vector ξ , a Killing horizon
H is a null hypersurface where the Killing vector ξ is null, tangent and nowhere
zero. The integral lines of ξ are null geodesics on H and the surface gravity is the
scalar function on H defined by κ: ∇ξ ξ H

= κξ . It is well-known that κ is constant
if (M,g) satisfies the DEC. In the following we will assume that H has topology
S×R with S closed and that the R factor is tangent to the integral lines of ξ .

The Killing equations imply immediately that all spacelike sections S0 in H are
MOTS and, in fact, with vanishing second fundamental form along ξ , i.e. χξ (S0) =

0. The Raychaudhuri equation then implies G(ξ ,ξ ) H
= 0. These two properties say

that the function W introduced before vanishes identically in this case and, hence,
that the stability operator of S0 is independent of the transverse direction v. Both the
stability operator and its principal eigenvalue are therefore properties of S0 alone.
We will denote them simply by LS0 and λS0 respectively. A natural question is then
whether the stability is a property of the horizon itself or whether it depends on the
choice of section S0. To address this issue it is convenient to obtain first an explicit
form of the stability operator. This was done in [26] for general totally geodesic null
hypersurfaces. Here we restrict ourselves to Killing horizons for definiteness.

Theorem 2. Let S0 be a spacelike section of a Killing horizon H of topology S×R.
Let k be a null vector field on S0, orthogonal to S0 and satisfying ⟨ξ ,k⟩ = −1. The
stability operator LS0 takes the form

LS0(ψ) =−DA

(
uDA

(ψ
u

))
+2zADAψ −κθkψ,

where the positive scalar function u and the one-form zA are defined via the
Helmholz decomposition of the normal connection one-form sA as s = z+ du

2u .

Notice that u is defined up to an arbitrary multiplicative constant, which obviously
has no effect in the expression for LS0 . Combining this theorem with the behaviour
of sA and θk under a change of section the following theorem follows [26]

Theorem 3. If H has constant surface gravity, then λS0 is independent of S0. More-
over there exist Killing horizons H with non-constant κ for which λS0 depends on
S0.

Regarding the analysis of the area-angular momentum inequality for Killing hori-
zons, it turns out that the stability of S0 has implications on certain integral of the
transverse null expansion θk on S0. More precisely [26]
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Proposition 2. Let H be a Killing horizon with topology S ×R and let S0 any
spacelike section of H . Assume that zA and du in the decomposition s = z+ du

2u are
orthogonal (this occurs automatically if H is axially symmetric and S0 respects the
axial symmetry and has spherical topology). Then the following holds

• If S0 is stable then
∫

S0
κθku ≤ 0

• If S0 is strictly stable then
∫

S0
κθku < 0.

• If S0 is stable and κ is constant and non-zero, then
∫

S0
κθku = 0 ⇐⇒ θk = 0.

This Proposition is the key property that allows one to find the link between the
proof of the area-angular momentum inequality in the black hole case [16] and the
purely local inequality in [23]. This relationship is given in the following result [26]

Theorem 4. Assume that the spacetime (M,g) satisfies the DEC and admits a
Killing vector ξ with a Killing horizon H . Assume that H ≃ S2 ×R is axially
symmetric with κ ̸= 0 constant. Write the metric of spacelike sections of H in the
form

h = e2ce−σ dθ 2 + eσ sin2 θdϕ 2. (12)

Then there exists a section S1 for which s = z− 1
2 dσ . Moreover, if

∫
S1

κθke−σ ≤ 0
then |S| ≥ 8π|J|.
Notice that S1 is not assumed to be stable in this theorem. The inequality involv-
ing θk is sufficient for proving the area-angular momentum inequality. Proposition
2 shows that stability of the Killing horizon (or equivalently stability of any of its
spacelike sections) is sufficient to imply the validity of the integral inequality as-
sumed in the theorem. It turns out that the surface S0 used by [16] is precisely the
surface S1 in this theorem. Moreover, their inequality

∫
S0

∂R(ûµ̂)|R=rh sinθdθ > 0
is precisely the geometric inequality

∫
S κθke−σ < 0, and the link between the two

approaches becomes clear. A similar clarification for the degenerate case has been
recently obtained in [40].

8 Further results and open problems

As mentioned in the Introduction, when the spacetime has an electromagnetic field,
the area-energy momentum inequality can be strengthened to include the electric
charge. This was first done for stationary and axially symmetric degenerate black
holes in [15]. The main assumption was that the spacetime is electrovacuum in a
neighbourhood of the horizon and it was shown that the equality |S|= 4π

√
Q4 +4J2

always holds. In the same setting, but allowing non-degenerate subextremal black
holes, the strict inequality |S|> 4π

√
Q4 +4J2 was proved in [17]. The local version

of this inequality (i.e. for stable, axially symmetric MOTS) has been proved in [25]
Everything we have said so far involves four-dimensional spacetimes. Recent

work by Hollands [41] establishes the following generalization to arbitrary dimen-
sion.
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Theorem 5. Let (Mn+1,g) be a vacuum spacetime with a non-negative cosmolog-
ical constant Λ , n ≥ 3 and which admits a stable Killing horizon H of topology
S×R with S closed. Assume further that (Mn+1,g) admits an additional isometry
group U(1)n−2 leaving H invariant and consider a section S0 of H respecting the
U(1)n−2 symmetries. Let η± be the Killing vectors which vanish, respectively, at the
“north” and “south” poles of S0. Then

|S0| ≥ 8π|J(η+)J(η−)|1/2

where J(η) := 1
8π
∫

S0
s(η)ηS0

(for the precise definition of the vectors η± see in [41]).
Before concluding this lecture, let me present a brief list of open problems. The

first one refers to the higher dimensional case. The statement above requires that
the spacetime contains a Killing horizon and that the spacetime is vacuum, possibly
with a positive cosmological constant. It would be of interest to relax this and admit
a general spacetime satisfying the DEC. It is also of interest to prove the statement
directly at the local level, i.e. for stable MOTS. Another interesting problem in this
context is whether the symmetry assumptions can be relaxed to a small number of
linearly independent Killing vectors.

In relation to the structure of the proof of the area-angular momentum inequality,
it would be of interest to find a deeper reason of why the choice of u= e−

σ
2 , where σ

is defined as a metric coefficient, is the appropriate choice and what is the underlying
reason for the role played by the hyperbolic space (and other highly symmetric
spaces in the charged case) in the proof of the inequality.

Another interesting problem is to understand why the surface t̃ = const in
Eddington-Finkesltein coordinates for black holes is precisely the surface S1 in the
area-angular momentum inequality for Killing horizons, i.e. why for these coor-
dinates, the normal connection one-form is linked to the induced metric via the
condition spelled out in Theorem 4.
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