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Abstract The Hamiltonian for dynamic geometry generates the evolution of a
spatial region along a vector field. It includes a boundary term which determines
both the value of the Hamiltonian and the boundary conditions. The value gives the
quasi-local quantities: energy-momentum, angular-momentum/center-of-mass. The
boundary term depends not only on the dynamical variables but also on their ref-
erence values; the latter determine the ground state (having vanishing quasi-local
quantities). For our preferred boundary term for Einstein’s GR we propose 4D iso-
metric matching and extremizing the energy to determine the reference metric and
connection values.

1 Introduction

Energy-momentum is the source of gravity. Gravitating bodies can exchange energy-
momentum with gravity—locally—yet there is no well defined energy-momentum
density for gravity itself. This inescapable conclusion can be understood as a con-
sequence of the equivalence principle (for a discussion see [1], Section 20.4).
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2 Quasi-local energy-momentum

The standard approaches aimed at identifying an energy-momentum density for
gravitating systems always led to various non-covariant, reference frame dependent,
energy-momentum complexes (such expressions are generally referred to as pseu-
dotensors). There are two types of ambiguity. First, there was no unique expression,
but rather many that were found by various investigators—including Einstein [2],
Papapetrou [3], Landau-Lifshitz [4], Bergmann-Thompson [5], Møller [6], Gold-
berg [7], and Weinberg [8]—so which expression should be used? And second—in
view of the fact all of these expressions are inherently reference frame dependent—
for a chosen expression which reference frame should be used to give the proper
physical energy-momentum localization?

The more modern idea is quasi-local, i.e., energy-momentum should be associ-
ated not with a local density but rather with a closed 2-surface; for a comprehensive
review see [9].

One approach to energy-momentum is via the Hamiltonian (the generator of time
evolution). It turns out that this actually includes all the classical pseudotensors as
special cases, while taming their ambiguities—providing clear physical/geometric
meaning [10, 11].

3 The covariant Hamiltonian formulation results

We have developed a covariant Hamiltonian formalism that is applicable to a large
class of geometric gravity theories [12, 13, 10, 14, 11, 15, 16]. For such theories the
Hamiltonian 3-form H (N) is both a conserved Noether current,

dH (N) ∝ field eqns ≃ 0 , (1)

as well as the generator of the evolution of a spatial region along a space-time dis-
placement vector field. It has the general form

H (N) = NµHµ +dB(N) , (2)

where NµHµ —which generates the evolution equations—is itself proportional to
certain field equations (initial value constraints) and thus vanishes “on shell”. Conse-
quently the value of the Hamiltonian is determined by the total differential (bound-
ary) term:

E(N,Σ) :=
∫

Σ
H (N) =

∮
∂Σ

B(N) . (3)

Thus, the value is quasi-local. From this boundary term, with suitable choices of the
vector field on the boundary, one can determine the quasi-local energy-momentum
and angular momentum/center-of-mass.
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It should be noted that the boundary 2-form B(N) can be modified—by hand—
in any way without destroying the conservation property. (This is a particular case of
the usual Noether conserved current ambiguity.) With this freedom one can arrange
for almost any conserved quasi-local values. Fortunately the Hamiltonian’s role in
generating evolution equations tames that freedom.

4 Boundary variation principle, reference values

One must look to the boundary term in the variation of the Hamiltonian (see [17,
18, 19]). Requiring it to vanish yields the boundary conditions. The Hamiltonian
is functionally differentiable on the phase space of fields satisfying these boundary
conditions. Modifying the boundary term changes the boundary conditions. (The
different classical pseudotensors are each associated with a specific “superpoten-
tial” which can serve as the Hamiltonian boundary term, thus they correspond to
Hamiltonians with different boundary conditions [10].)

In order to accommodate suitable boundary conditions one must, in general, also
introduce certain reference values which represent the ground state of the field—
the “vacuum” (or background field) values. To this end for any quantity α we let
∆α := α − ᾱ where ᾱ is the reference value.

5 Preferred boundary term for GR

Some time ago we identified for GR two covariant-symplectic boundary terms [12];
one, which was also found1 at about the same time by Katz, Bičák and Lynden-
Bell [20, 21], has become our preferred choice:2

B(N) =
1

2κ
(∆Γ α

β ∧ iNηα
β + D̄β Nα ∆ηα

β ) , (4)

This choice corresponds to fixing the orthonormal coframe ϑ µ (equivalently the
metric) on the boundary:

δH (N)∼ diN(∆Γ α
β ∧δηα

β ) . (5)

Like other choices, at spatial infinity it gives the ADM [22], MTW [1], Regge-
Teitelboim [18], Beig-Ó Murchadha [23], Szabados [24, 25] energy, momentum,
angular-momentum, center-of-mass.

Its special virtues include (i) at null infinity it directly gives the Bondi-Trautman
energy and the Bondi energy flux [15], (ii) it is “covariant”, (iii) it has a positive en-

1 Via a different route, using a Noether type argument with a global reference.
2 Here Γ α

β is the connection one-form, ηαβ ... := ∗(ϑ α ∧ϑ β ∧ ·· ·) and iN denotes the interior
product (aka contraction) with the vector field N.
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ergy property, (iv) for small spheres it gives a positive multiple of the Bel-Robinson
tensor, (v) it yields the first law of thermodynamics for black holes [13], (vi) for
spherically symmetric solutions it has the hoop property [26].

6 The reference and the quasi-local quantities

For all other fields it is appropriate to choose vanishing reference values as the refer-
ence ground state—the vacuum. But for geometric gravity the standard ground state
is the non-vanishing Minkowski metric. Thus a non-trivial reference is essential.

Using standard Minkowski coordinates yi, a Killing field of the reference has the
form Nk = Nk

0 +λ k
0 lyl , where the translation parameters Nk

0 and the boost-rotation
parameters λ kl

0 = λ [kl]
0 are constants. The 2-surface integral of the Hamiltonian

boundary term then gives a value of the form∮
S
B(N) =−Nk

0 pk(S)+
1
2

λ kl
0 Jkl(S) , (6)

which yields not only a quasi-local energy-momentum but also a quasi-local angu-
lar momentum/center-of-mass. The integrals pk(S), Jkl(S) in the spatial asymptotic
limit agree with accepted expressions for these quantities [1, 18, 23, 24, 25].

7 The reference

For energy-momentum one takes N to be a translational Killing field of the Min-
kowski reference. Then the second term in our quasi-local boundary expression (4)
vanishes. Let us note in passing that holonomically (with vanishing reference con-
nection coefficients) the first term in (4) reduces to Freud’s 1939 superpotential [27].
Thus we are in effect here making a proposal for good coordinates for the Einstein
pseudotensor.

To construct a reference, choose, in a neighborhood of the desired spacelike
boundary 2-surface S, four smooth functions yi, i = 0,1,2,3 with dy0 ∧dy1 ∧dy2 ∧
dy3 ̸= 0; they define a Minkowski reference by ḡ = −(dy0)2 +(dy1)2 +(dy2)2 +
(dy3)2. This is equivalent to finding a diffeomorphism for a neighborhood of the 2-
surface into Minkowski space. The reference connection can now be obtained from
the pullback of the flat Minkowski connection.

With constant Nk our quasi-local expression now takes the form

B(N) = Nkxµ
k(Γ α

β − xα
j dy j

β )∧ηµα
β , (7)

where dyk = yk
α dxα has the inverse dxα = xα

kdyk.



A Reference for the Covariant Hamiltonian Boundary Term 5

8 Isometric matching of the 2-surface

The reference metric on the dynamical space has the components

ḡµν = ḡi jyi
µ y j

ν . (8)

Consider the usual embedding restriction: isometric matching of the 2-surface S.
This can be expressed quite simply in terms of quasi-spherical foliation adapted
coordinates t,r,θ ,φ as

gAB=̇ḡAB = ḡi jyi
Ay j

B =−y0
Ay0

B +δi jyi
Ay j

B , (9)

where S is given by constant values of t,r, and A,B range over θ ,φ . We use =̇ to
indicate a relation which holds only on the 2-surface S.

From a classic closed 2-surface into R3 embedding theorem—as long as one
restricts S and y0(xµ) so that on S

g′AB := gAB + y0
Ay0

B (10)

is convex—one has a unique embedding. Wang and Yau have discussed in detail
this type of embedding of a 2-surface into Minkowski controlled by one function in
their recent quasi-local work [28, 29].

9 Complete 4D isometric matching

Our “new” proposal is: complete 4D isometric matching on S. (We remark that this
was already suggested by Szabados back in 20003, and he has since extensively
explored this idea [30] in unpublished work.)

Complete 4D isometric matching imposes 10 constraints,

gµν |S=̇ḡµν |S=̇ḡi jyi
µ y j

ν |S ,

on the 16 yi
α(t0,r0,θ ,φ). On the 2-surface S these 16 quantities are actually deter-

mined by 12 independent embedding functions: yi,yi
t ,yi

r (since from yi on S one
can get yi

θ ,yi
φ ). There remain 2 = 12−10 degrees of freedom in choosing the ref-

erence.
One could as an alternative use orthonormal frames. Then the 4D isometric

matching can be represented by ϑ α=̇ϑ̄ α . But the reference coframe has the form
ϑ̄ α = dyα . Thus one should Lorentz transform the coframe ϑ α to match dyα on the
2-surface S. This leads to an integrability condition: the 2-forms dϑ α should vanish
when restricted to the 2-surface:

3 At a workshop in Hsinchu, Taiwan.
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dϑ α |S=̇0, (11)

This is 4 conditions restricting the 6 parameter local Lorentz gauge freedom. Which
again reveals that after 4D isometric matching there remains 2 = 6− 4 degrees of
freedom in choosing our reference. By the way, this orthonormal frame formulation
shows that our procedure can alternatively be viewed as finding a good frame for
the “teleparallel gauge current” [31].

10 The best matched reference geometry

There are 12 embedding variables subject to 10 4D isometric matching conditions,
or equivalently, 6 local Lorentz gauge parameters subject to 4 frame embedding
conditions. To fix the remaining 2, one can regard the quasi-local value as a measure
of the difference between the dynamical and the reference boundary values. So we
propose taking the optimal “best matched” embedding as the one which gives the
extreme value to the associated invariant mass m2 = −pi p jḡi j. This is reasonable,
as one expects the quasi-local energy to be non-negative and to vanish only for
Minkowski space.

More precisely, we note two different situations:
I: Given a 2-surface S find the critical points of m2. This should determine the ref-
erence up to Poincaré transformations.
II: Given a 2-surface S and a vector field N, then one can look to the choices of
the embedding variables that are a critical point of E(N,S). (Afterward one could
extremize over the choice of N.)

Based on some physical and practical computational arguments it seems reason-
able to expect a unique solution in general.

For spherically symmetric systems (both static and dynamic), using this and
some other related strategies we have found reasonable quasi-local energy re-
sults [32, 33, 34, 35].
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20. D. Lynden-Bell, J. Katz, J. Bičák, Mach’s principle from the relativistic constraint equations,
Mon. Not. R. Astron. Soc. 272, 150 (1995). Erratum: ibid. 277, 1600 (1995)
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