
Stationary black-hole binaries:
A non-existence proof

Gernot Neugebauer and Jörg Hennig

Abstract We resume former discussions of the question, whether the spin-spin re-
pulsion and the gravitational attraction of two aligned black holes can balance each
other. Based on the solution of a boundary problem for disconnected (Killing) hori-
zons and the resulting violation of characteristic black hole properties, we present
a non-existence proof for the equilibrium configuration in question. From a mathe-
matical point of view, this result is a further example for the efficiency of the inverse
(“scattering”) method in non-linear theories.

1 Introduction

The examination of time-independent two-body systems dates back to the early
days of General Relativity. In a 1922 paper, Rudolf Bach and Hermann Weyl [1]
discussed the superposition of two exterior Schwarzschild solutions in Weyl coordi-
nates as a characteristic example for an equilibrium configuration consisting of two
“sphere-like” bodies at rest. Bach noted that this static solution develops a singular-
ity on the portion of the symmetry axis between the two bodies, which violates the
elementary flatness on this interval. In a supplement to Bach’s contribution, Weyl
focused on the interpretation of this type of singularity and used stress components
of the energy-momentum tensor to define a non-gravitational repulsion between
the bodies which compensates the gravitational attraction. Weyl’s result is based on
some artificial assumptions but implies an interesting question: Are there repulsive
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effects of gravitational origin which could counterbalance the omnipresent mass
attraction?

Post-Newtonian approximations tell us that the interaction of the angular mo-
menta of rotating bodies (“spin-spin interaction”) could indeed generate repulsive
effects. This is a good motivation to study, in a rigorous way, stationary two-body
problems.

In this contribution we shall summarize the results that we obtained for a sta-
tionary two-black-hole system consisting of two aligned rotating black holes with
parallel (or anti-parallel) spins, see Fig. 1. The representation is based on three re-
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Fig. 1 Illustration of two aligned rotating black holes with horizon areas A1, A2 and angular mo-
menta J1, J2.

cent papers which contain the details of the analysis [2, 3, 4]. The idea of our non-
existence proof is to construct the exterior gravitational fields of two disconnected
Killing horizons, see Fig. 2 below, via a boundary problem for the nonlinear Ernst
equation, which is essentially equivalent to the vacuum Einstein equations. For-
tunately, this equation belongs to a class of completely integrable differential equa-
tions, which can be mapped to linear structures (“Linear Problems”). This fact is the
source of powerful solution generating methods such as Bäcklund transformations.
It can be shown that a single Bäcklund transformation [5, 6] applied to Minkowski
space creates a Kerr-NUT spacetime which includes the spacetime of the rotating
black hole. Since iterative Bäcklund transformations act as a “nonlinear superposi-
tion principle”, the double-Kerr-NUT solution [7, 5] was considered to be a good
candidate for the solution of the two-horizon problem and extensively discussed in
the literature [8, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17]. However, there was no argu-
ment ensuring that this particular solution be the only candidate. We have removed
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this objection and shown that the solution procedure for the boundary problem nec-
essarily leads to a subclass of the double-Kerr-NUT solution. Thus we could make
use of results derived for the double-Kerr-NUT solution. The result is in line with a
theorem of Varzugin [18, 19], which says that the 2N-soliton solution by Belinskiĭ
and Zakharov [20, 21] contains all possible solutions (if any existed) correspond-
ing to an equilibrium configuration of black holes. The subclass is characterized by
a set of restrictions for the parameters of the general double-Kerr-NUT solution.
These restrictions, first derived and discussed by Tomimatsu and Kihara [11, 16],
ensure the regularity of the double-Kerr-NUT solution on the axis of symmetry and
on the horizons. An elegant reformulation of the Tomimatsu-Kihara regularity con-
ditions by Manko, Ruiz and Sanabria-Gómez [15] made it possible to express black
hole quantities such as mass, angular momentum and surface area in terms of in-
dependent parameters. We have made use of these results. Another condition to be
satisfied is the positivity of the total mass. Combining the restrictions with symme-
try arguments, Hoenselaers and Dietz [8, 10] and Krenzer [13] could show that the
double-Kerr-NUT solution cannot describe a configuration consisting of two iden-
tical black holes. Manko and Ruiz [14] generalized this result by showing that the
regularity conditions imply that at least one of the two horizons has a negative Ko-
mar mass. They argued, without giving any explanation, that this peculiarity casts
out the double-Kerr-NUT solution. Remarkably, Ansorg and Petroff [22], who de-
scribed an equilibrium configuration with a positive total mass and a component
which has a negative Komar mass, came to an opposite interpretation. However,
considerations like these stimulated us to examine further black hole inequalities.
Fundamental local “state variables” of a rotating black hole are its area A and its an-
gular momentum J. Indeed, for a single black hole these quantities are restricted by
the inequality 8π|J| ≤ A. Based on results of Ansorg and Pfister [23], who examined
extremal black holes, Hennig, Cederbaum and Ansorg [24], who, following Booth
and Fairhurst [25], studied sub-extremal black holes defined through existence of
trapped surfaces (surfaces with a negative expansion of outgoing null rays) in every
sufficiently small interior neighbourhood of the event horizon, and Chrusćiel, Eck-
stein, Nguyen and Szybka [26], we can assume that each of the two black holes has
to satisfy the angular momentum-area inequality individually. Surprisingly, Dain
and Reiris [27] were able to extend its range of application to non-stationary black
holes, see also the overview article by Dain [28] and references therein.

2 Mathematical tools

2.1 Metric and horizons

The exterior vacuum gravitational field of axially symmetric and stationary gravita-
tional sources can be described in cylindrical Weyl-Lewis-Papapetrou coordinates
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(ρ,ζ ,φ, t)1, in which the line element takes the form

ds2 = e−2U[e2k(dρ2 +dζ 2)+ρ2dφ2]− e2U (dt +adφ)2, (1)

where the “Newtonian” gravitational potential U , the gravitomagnetic potential a
and the “superpotential” k are functions of ρ and ζ alone. At large distances r =
|
√

ρ2 +ζ 2| → ∞ from isolated sources located around the origin of the coordinate
system, r = 0, the spacetime has to be Minkowskian,

r → ∞ : ds2 = dρ2 +dζ 2 +ρ2dφ2 −dt2. (2)

Metric (1) admits an Abelian group of motions G2 with the generators (Killing vec-
tors)

ξ i = δ i
t , (stationarity), (3)

η i = δ i
φ , (axisymmetry), (4)

where the Kronecker symbols δ i
t , δ i

φ indicate that ξ i has only a time t-component
whereas η i points in the azimuthal (φ-) direction. η i has closed compact trajectories
about the axis of symmetry and is therefore spacelike off the axis (and the horizons).
ξ i is timelike sufficiently far from the black holes but can become spacelike inside
ergoregions. Obviously,

e2U =−ξ iξi, a =−e−2U ηiξ i (5)

is a coordinate-free representation of the two relativistic gravitational potentials U
and a.

In stationary (and axisymmetric) spacetimes, the event horizon as the central
black hole property is a local concept. Consider the Killing vector ξ ′,

ξ ′ = ξ +Ωη (6)

with the norm

e2V =−(ξ ′,ξ ′) = e2U [
(1+Ωa)2 −ρ2Ω 2e−4U] , (7)

where Ω is a real constant. A connected component of the set of points with e2V = 0,
which is a null hypersurface, (de2V ,de2V ) = 0, is called a Killing horizon H (ξ ′),

H (ξ ′) : e2V =−(ξ ′,ξ ′) = 0, (de2V ,de2V ) = 0. (8)

Since the Lie derivative Lξ ′ of e2V vanishes, we have (ξ ′,de2V ) = 0. Being null
vectors on H (ξ ′), ξ ′ and de2V are proportional to each other,

1 In the following, we also use the complex coordinates z = ρ + iζ and z̄ = ρ − iζ . t is the time
coordinate.
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Fig. 2 A two-black-hole equilibrium configuration in Weyl-Lewis-Papapetrou coordinates.
(Adapted from [2].)

H (ξ ′) : de2V =−2κξ ′. (9)

Using the (vacuum) field equations one can show that the surface gravity κ is a
constant on H (ξ ′). Ω is the angular velocity of the horizon. In black hole thermo-
dynamics, κ and Ω are conjugate to the extensive quantities A (area) and J (angular
momentum), respectively.

In the ρ-ζ plane (t = constant, φ = constant) of the Weyl-Lewis-Papapetrou co-
ordinate system (1), the horizons cover a finite portion on the ζ -axis (ρ = 0), see
Fig. 2, or shrink to a point [29]. It turns out that extended horizons (“sub-extremal
horizons”) and point-like horizons (“degenerate horizons”) require different con-
siderations. Note that a Killing horizon is always a two-surface in the time slice
t = constant. The degeneracy to a line or a point is a peculiarity of the special coor-
dinate system.

In this paper, we explain the non-existence proof for extended (sub-extremal)
horizons and end up with a brief comment on degenerate horizons.

The dashed line in Fig. 2 sketches the boundaries of the vacuum region: A +, A 0,
A − are the vacuum parts of the ζ -axis (axis of symmetry), H (1) and H (2) denote
the two Killing horizons, which are located in the intervals [K2,K1] and [K4,K3] on
the ζ -axis, and C stands for spatial infinity. The gravitational fields a, k, U have to
satisfy the following boundary conditions

A ±,A 0 : a = 0, k = 0, (10)
H (i) : 1+Ωia = 0, i = 1,2, (11)

C : U → 0, a → 0, k → 0, (12)
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where Ω1 and Ω2 are the angular velocities of the two horizons. Equations (10)
characterize the axis of symmetry (rotation axis). The first relation originates from
the second equation in (5), since the compact trajectories of η with the standard pe-
riodicity 2π become infinitesimal circles with the consequence η → 0. The second
relation is a necessary condition for elementary flatness (Lorentzian geometry in the
vicinity of the rotation axis). Equation (11) is a reformulation of Eqs. (8) (e2V = 0)
and (7) since the horizons are located on the ζ -axis (ρ = 0), see Fig. 2. Finally,
Eq. (12) ensures the asymptotic flatness of the metric (1), see (2).

2.2 Field equations and Linear Problem

The stationary and axisymmetric vacuum Einstein equations for the metric poten-
tials U and a are equivalent to the Ernst equation

(ℜ f )
(

f,ρρ + f,ζζ +
1
ρ

f,ρ
)
= f 2

,ρ + f 2
,ζ (13)

for the complex function

f (ρ,ζ ) = e2U(ρ,ζ )+ ib(ρ,ζ ), (14)

where the twist potential b is defined by

a,ρ = ρe−4U b,ζ , a,ζ =−ρe−4U b,ρ . (15)

The potential k can be calculated from

k,ρ = ρ
[
U2
,ρ −U2

,ζ +
1
4

e−4U (b2
,ρ −b2

,ζ )
]
, (16)

k,ζ = 2ρ
[
U,ρU,ζ +

1
4

e−4U b,ρ b,ζ
]
. (17)

As a consequence of the Ernst equation (13), the integrability conditions a,ρζ =
a,ζ ρ and k,ρζ = k,ζρ are satisfied such that the metric potentials a and k may be
calculated via line integration from the Ernst potential f . Since e2U = ℜ f , all metric
coefficients in (1) can uniquely be determined from f . Thus the boundary problem
for the vacuum Einstein equations reduces to a boundary problem for the Ernst
equation. However, we have to cope with non-local boundary conditions (10)-(12),
(15)-(17) for the Ernst potential f . Fortunately, these boundary conditions are well-
adapted to the “inverse method”, which we applied to solve the boundary value
problem.

The Ernst equation is the integrability condition ΦΦΦ ,zz̄ = ΦΦΦ ,z̄z of the Linear Prob-
lem (LP) [30, 31]

ΦΦΦ ,z =

[(
N 0
0 M

)
+λ

(
0 N
M 0

)]
ΦΦΦ , (18)
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ΦΦΦ ,z̄ =

[(
M̄ 0
0 N̄

)
+

1
λ

(
0 M̄
N̄ 0

)]
ΦΦΦ , (19)

where the pseudopotential ΦΦΦ(z, z̄,λ ) is a 2× 2 matrix depending on the spectral
parameter

λ =

√
K − iz̄
K + iz

(20)

as well as on the complex coordinates

z = ρ + iζ , z̄ = ρ − iζ , (21)

whereas M, N and the complex conjugate quantities M̄, N̄ are functions of z, z̄ (or
ρ , ζ ) alone and do not depend on the constant complex parameter K. Since the
integrability condition must hold identical in λ (or K) it yields a system of first
order differential equations for N and M which is equivalent to the Ernst equation.
The first order system has the “first integrals”

M =
f,z

f + f̄
, N =

f̄,z
f + f̄

. (22)

Vice versa, any solution f of the Ernst equation admits the unique determination of
the pseudopotential ΦΦΦ up to constants of integration. Thus the Ernst equation (13)
and the LP (18), (19) are equivalent to each other.

Multiplying (18) by dz and adding (19) multiplied by dz̄ one obtains the refor-
mulation dΦΦΦ = (...)ΦΦΦ of the LP in the form of a system of (overdetermined) total
differential equations.

Without loss of generality we choose the standard representation

ΦΦΦ =

(
ψ(ρ,ζ ,λ ) ψ(ρ,ζ ,−λ )
χ(ρ,ζ ,λ ) −χ(ρ,ζ ,−λ )

)
(23)

where

ψ̄
(

ρ,ζ ,
1
λ̄

)
= χ(ρ,ζ ,λ ) (24)

due to the special structure of the coefficient matrices of the LP. For K → ∞ and
λ →−1, the functions ψ , χ can be normalized by

ψ(ρ,ζ ,−1) = χ(ρ,ζ ,−1) = 1. (25)

As a consequence of the LP, the Ernst potential and the gravitomagnetic potential
can be read off from the pseudopotential ΦΦΦ at K → ∞ and λ →+1,

f (ρ,ζ ) = χ(ρ,ζ ,1) = ΦΦΦ21(ρ,ζ ,1), (26)
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a(ρ,ζ ) = ie−2U
(

K2 ∂
∂K

[χ(−λ )−ψ(−λ )]
)∣∣∣∣ λ = 1

K → ∞

−C, (27)

where C is an arbitrary constant. The idea of the inverse (scattering) method is to
discuss ΦΦΦ , for fixed but arbitrary values of ρ , ζ (z, z̄) as a holomorphic function
of λ or K. In the latter case, ΦΦΦ “lives” on the two sheets of the Riemann surface
associated with (20). As this mapping depends on the parameters ρ , ζ , the position
of the branch points KB = iz̄, K̄B = −iz and the branch cut between them changes
with the coordinates.

3 Non-existence proof

3.1 Integration of the Linear Problem

In order to solve the boundary problem (13), (10)-(12), we shall integrate (“solve”)
the LP along the dashed line in Fig. 2 which marks, in the ρ-ζ plane, the boundary
of the vacuum domain outside the horizons. Starting from and returning to any axis
point, say ρ = 0, ζ ∈A +, we shall make use of the boundary conditions and finally
arrive at a representation of the Ernst potential on the axis of symmetry. It turns out
that this representation is sufficient to express all black hole quantities (such as areas
A1, A2 and angular momenta J1, J2 of the black holes) in terms of three independent
real parameters (plus two additional scaling parameters) and to establish the equa-
tions of state of the black hole thermodynamics of the equilibrium configuration
under discussion. Furthermore, the axis values f (ζ ) = f (ρ = 0,ζ ) fix the solution
f (ρ,ζ ) of the Ernst equation uniquely [32].

Since λ (K) as defined in (20) degenerates on the ζ -axis, λ =±1, the LP dΦΦΦ =
(...)ΦΦΦ can easily be integrated. For λ =+1 one obtains

A ±,A 0,H (i) : ΦΦΦ =

(
f̄ 1
f −1

)
L, L =

(
A(K) B(K)
C(K) D(K)

)
. (28)

The representation for λ = −1 follows from (23) by exchanging column elements.
Remarkably, the ΦΦΦ-matrix separates. The first factor depends on the path of in-
tegration whereas L representing the “integration constants” is a function of the
spectral parameter K alone. There is a difference between the case of two ex-
tended horizons and that of one or two degenerate horizons. In the first case one
can parametrize the dashed curve by the coordinate ζ everywhere on the ζ -axis,
i.e. f = f (ρ = 0,ζ )= f (ζ ) on A ±,A 0,H (i). This is clearly impossible if the dashed
curve runs around a point-like horizon. A path like this can be described by an in-
finitesimal semicircle which brings (local) polar coordinates (R,θ) into play [33].
Then we have f = f (R → 0,θ) = f (θ), θ ∈ [0,π] in (28).

To exploit characteristic properties of the horizons such as (8) and (9), it is helpful
to introduce corotating frames of reference defined by
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ρ ′ = ρ, ζ ′ = ζ , φ ′ = φ −Ω t, t ′ = t, (29)

where Ω = Ω1, Ω2. This coordinate transformation induces transformations of the
gravitational potentials in (1) such that

e2U ′ ≡ e2V = e2U [(1+Ωa)2 −Ω 2ρ2e−4U ], (30)

(1−Ωa′)e2U ′
= (1+Ωa)e2U , (31)

where a prime denotes “corotating” quantities. To determine the corotating Ernst
potential f ′ one has to apply (15) to a′ and e2U ′

. Finally, using the equations (22)
for N′,M′, one obtains the corotating pseudopotential [33]

ΦΦΦ ′ = TΩ ΦΦΦ , (32)

where

TΩ =

(
1+Ωa−Ωρe−2U 0

0 1+Ωa+Ωρe−2U

)
+i(K + iz)Ωe−2U

(
−1 −λ
λ 1

)
. (33)

The validity of the Ernst equations of the non-rotating and corotating system at
the points of intersection A /H (axis of symmetry/extended horizon) and A /C
(axis/circle at infinity), see Fig. 2, implies that ΦΦΦ and ΦΦΦ ′ must be continuous there
as well. By way of example let us consider the continuity of ΦΦΦ in (28) and ΦΦΦ ′ in
(32) at the point ρ = 0, ζ = K1. It immediately leads to a connection of the horizon
and axis values of the “integration constants” L(1) and L+, cf. (28),

L(1) =

(
1− F1

2iΩ (1)(K −K1)

)
L+, (34)

where F1 is is a special case of Fi as needed later,

Fi :=
(

− fi 1
− f 2

i fi

)
, fi = f (Ki), i = 1, . . . ,4. (35)

Note that f̄1 = − f1 since e2V and e2U are continuous at the points of intersection
and e2V = 0 from the side of the horizon. If one continues the interlinking procedure
along the closed contour, one returns to the starting point with the result

L+

(
0 1
1 0

)
(L+)−1 = R+, (36)

where
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R+ :=
4

∏
i=1

(
1− (−1)i Fi

2iΩ (i)(K −Ki)

)(
0 1
1 0

)
(37)

with Ω (1) = Ω (2) = Ω1, Ω (3) = Ω (4) = Ω2.
Point-like (degenerate) horizons can be involved without any difficulty by setting

K1 = K2 or/and K3 = K4 in these equations [33].
We shall show that (36) with (37) as the result of the integration of the LP along

the closed (dashed) contour in Fig. 2 yields the Ernst potential on the axis.

3.2 Ernst potential on the axis

At the branch points K = KB = iz̄, K = K̄B =−iz of the Riemann K-surface, where
λ = 0, λ = ∞, respectively, one finds from (23) ΦΦΦ11 = ΦΦΦ12, ΦΦΦ21 =−ΦΦΦ22,

K = KB : ΦΦΦ
(

0 1
1 0

)
ΦΦΦ−1 =

(
1 0
0 −1

)
. (38)

On the ζ -axis one has confluent branch points, KB = K̄B = ζ . For this choice one
obtains from (38), (28) and (36) in terms of the Ernst potential f+ on A +

R+(ζ ) =
(

f̄+(ζ ) 1
f+(ζ ) −1

)−1( 1 0
0 −1

)(
f̄+(ζ ) 1
f+(ζ ) −1

)
(39)

and so

[R+(ζ )−1]
(

1
f+(ζ )

)
= 0 (40)

for R+(ζ ) := R+(K = ζ ), cf. (37). Note that (40) is equivalent to (39): a second
column resulting from (39) and (40) are complex conjugate.

We shall now discuss properties of the Ernst potential on the axis which can be
derived from the eigenvalue equation (40). First of all, let us point out that similar
equations can be derived for all intervals A , H by the interlinking procedure as
explained in (34). At the first glance, f+(ζ ) seems to be a quotient of two poly-
nomials of fourth degree in ζ . However, attention must be paid to the fact that the
characteristic determinant has to vanish,

|R+(ζ )−1|= 0. (41)

This condition tells us that the numerator and the denominator of f+(ζ ) must have
two common zeros such that the axis potential is a quotient of two (normalized)
polynomials of second degree in ζ ,

f+(ζ ) =
n2(ζ )
d2(ζ )

=
ζ 2 +qζ + r
ζ 2 + sζ + t

, (42)
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where q, r, s, t are complex constants which can be expressed in terms of fi,
Ki and Ω (i), (i = 1, . . . ,4). For extended (sub-extremal) horizons the following
reparametrization is useful:

Defining

αi :=
d̄2(Ki)

d2(Ki)
, αiᾱi = 1, βi :=

n̄2(Ki)

n2(Ki)
, βiβ̄i = 1 (43)

and using
f+(Ki) =− f+(Ki), i = 1, . . . ,4, (44)

one obtains
βi =−αi. (45)

The equations (43) form a linear algebraic system for the parameters q, r, s, t. Elimi-
nating them in (42) one arrives at a determinant representation for the Ernst potential
on the axis A +, f+(ζ ), which can be written in the form

f+(ζ ) =

∣∣∣∣ s12 −1 s14 −1
s23 −1 s34 −1

∣∣∣∣∣∣∣∣ s12 +1 s14 +1
s23 +1 s34 +1

∣∣∣∣ , si j :=
αi(ζ −Ki)−α j(ζ −K j)

Ki j
, (46)

where
Ki j := Ki −K j, i, j = 1, . . . ,4. (47)

The continuation of f+(ζ ) to all space is unique [32] and leads to the representation

f (ρ,ζ ) =

∣∣∣∣R12 −1 R14 −1
R23 −1 R34 −1

∣∣∣∣∣∣∣∣R12 +1 R14 +1
R23 +1 R34 +1

∣∣∣∣ , Ri j :=
αiri −α jr j

Ki j
, (48)

where
ri :=

√
(ζ −Ki)2 +ρ2 ≥ 0, i, j = 1, . . . ,4. (49)

f (ρ,ζ ) is the Ernst potential of the double-Kerr-NUT solution which was originally
generated by a two-fold Bäcklund transformation of Minkowski space [5, 7] in the
form of a quotient of two 5 × 5 determinants. According to a rule of Yamazaki
[17], this type of determinants can be reduced to 2 × 2 determinants as used in
(48). Making use of (15) [or (27)], (16), (17) and e2U = ℜ f , one finds determinant
representations for all metric coefficients, i.e. for a, k, e2U in (1), see [4].

As a condition identical in K, Eq. (41) yields four constraints among the param-
eters Ω1, Ω2; K1 −K2, K2 −K3, K3 −K4; f1, . . . , f4. It can be shown [4] that this
system of algebraic equations guarantees that a = 0 on A ±,A 0 and C . As a conse-
quence, it eliminates NUT parameters from the Ernst potential. In consideration of
(40) and introducing dimensionless coordinates ρ̃ , ζ̃ via
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ρ̃ =
ρ

K23
, ζ̃ =

ζ −K1

K23
(50)

one realizes that f+(ζ ) from (40) and therefore f (ρ,ζ ) depend on four real param-
eters.

3.3 Weyl-Bach force between the black holes

So far we have examined the Ernst equation as a classical field equation. It is ques-
tionable whether the parameter conditions (41) alone could rule out the Ernst po-
tential under discussion and lead to a non-existence proof. Consider the static Ernst
equation which is an axisymmetric Laplace equation for the “Newtonian” gravi-
tational potential U in Weyl coordinates. The superposition of two solutions with
aligned rod-shaped sources (as “classical” precursors of horizons) is regular out-
side the sources. It is the gravitational interaction (“force”) between the rods that
forbids equilibrium. Bach, who examined this example in the already mentioned
Bach/Weyl paper [1], noted that the metric function k cannot vanish on the portion
of the axis between the two sources and that this fact violates the regularity of the
solution. Weyl’s remarks (published as a supplement to Bach’s paper) focused on
the interpretation of this type of singularity. He used fictitious stresses described
by an energy-momentum tensor to define a force of attraction between the sources.
This “Weyl-Bach force” turned out to be proportional to a constant value of k on
the portion of the axis between the two sources (in our notation k0) provided that
k+ = 0, k− = 0, which is a possible gauge. Note that k as defined in (16), (17) has
constant values on all intervals of the ζ -axis. One of them, considered to be the ar-
bitrary integration constant, can be chosen so that, say, k+ = 0. Integration of (16),
(17) along C in 2 results in k− = 0.

Equipped with that physical as well as geometrical interpretation of the superpo-
tential k0 (“attractive force” that violates the Lorentzian geometry in the vicinity of
the rotation axis) we shall examine the boundary condition

k0 = 0 (51)

for the gauge
k+ = k− = 0. (52)

Our discussion is based on the original parametrization of the double Kerr-NUT
solution, see (43), (45), (46), and Kramer’s representation of e2k [12]. (In principle,
one could determine the axis values of this gravitational potential from the axis
values of the Ernst potential by integrating the equations (16), (17) along the axis,
i.e. by operations on the dashed contour in Fig. 2.) It turns out that the boundary
conditions for non-overlapping extended horizons (51), (52) are satisfied by only
one parameter condition:

α1α2 +α3α4 = 0. (53)



Stationary black-hole binaries: A non-existence proof 13

Two of the four conditions (41) can be used to eliminate Ω1 and Ω2. The two re-
maining equations turn out to be equivalent to the equations

(1−α4)
2

α4
w2 =

(1−α3)
2

α3
, w :=

√
K14K24

K13K23
∈ [1,∞), (54)

(1+α2)
2

α2
w′2 =

(1+α1)
2

α1
, w′ :=

√
K23K24

K13K14
∈ (0,1]. (55)

The three restrictions (53), (54), (55) are nothing else but a reformulation of the
original Tomimatsu-Kihara conditions [11, 16]. This reformulation is due to essen-
tial examinations of the double-Kerr-NUT solution by Manko, Ruiz and Sanabria-
Gómez [15, 14]. As was particularly shown in [14], the restrictions (53), (54), (55)
can be solved to express the parameters α1, . . . ,α4 in terms of the three real param-
eters w, w′ and ϕ :

α1 =
w′α2 + iεα

w′− iεα
, α2 =

α2 + iw′εα
1− iw′εα

, (56)

α3 =
wα2 −α

w−α
, α4 =

α2 −wα
1−wα

, (57)

where ε =±1 and

α3α4 =−α1α2 ≡ α2 (α = eiϕ , ϕ ∈ [0,2π]). (58)

Now we have arrived at the final form of the solution of the boundary problem
(10), (11), (12) for the Ernst equation (13). Eliminating the αi in favour of w, w′,
ϕ and introducing dimensionless coordinates (50), f becomes a function of two
coordinates and three real parameters2,

f = f (ρ̃, ζ̃ ;w,w′,ϕ). (59)

Note that the relative horizon “lengths” K12/K23, K34/K23 can be expressed in terms
of w,w′ as well. At this point we cannot guarantee that this Ernst potential is well-
behaved. Computer experiments show that the regularity of the Ernst potential on
the axis of symmetry must be “paid of” in the form of singular rings outside the
horizons. Fig. 3 conveys an impression of the structure of this type of singularity.
Irregularities on the horizons could also rule out the solution. Since area A and
angular momentum J are individual quantities of each black hole, it is obvious to
examine the inequality 8π|J| < A which characterizes a single sub-extremal black
hole. Based on the literature as commented on in the introduction, we can take for
granted that this inequality has to hold on both horizons of a regular spacetime with
two sub-extremal black holes.

2 From this point of view, the Ernst potential of the Kerr solution depends on one real parameter
and two dimensionless coordinates.
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ρ ζ

ℜ f

Fig. 3 The singular Ernst potential for a particular example configuration. Parameters: ϕ =−0.1,
w = 1.3, w′ = 0.5, K1 = 2, K23 = 2, ε = 1.

3.4 Angular momentum-area inequality and non-existence proof

In order to examine the inequalities

H (i) : 8π|Ji|< Ai, i = 1,2, (60)

we calculate the quantities

pi :=
8πJi

Ai
, i = 1,2, (61)

in terms of the parameters w, w′ and ϕ ∈ [0,2π). Note that this computation can be
performed with the aid of the axis values of the Ernst potential alone, see [2]. The
result is

p1 = ε
1+Φw′

w′(Φ +w′)
, p2 = ε

w(w−Φ)

1−wΦ
(62)

where
Φ := cosϕ + ε sinϕ , ε =±1. (63)

From this we have

p2
1 −1 = (1−w′2)

w′2 +2Φw′+1
w′2(Φ +w′)2 < 0 (64)
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and

p2
2 −1 = (w2 −1)

w2 −2Φw+1
(wΦ −1)2 < 0. (65)

For the allowed parameter ranges w ∈ [1,∞), w′ ∈ (0,1], which follow from the
definitions (54), (55) of w and w′, these inequalities can only hold if

w′2 +2Φw′+1 < 0 and w2 −2Φw+1 < 0. (66)

This, however, implies Φw′ < 0 and Φw > 0 in contradiction to w′ > 0 and w > 0.
Thus we have proved the non-existence of stationary and axisymmetric configura-
tions consisting of two aligned sub-extremal black holes and we conclude that the
spin-spin repulsion cannot compensate for the gravitational attraction.

4 Summary

As a characteristic example for the ongoing discussion about existence or non-
existence of stationary equilibrium configurations within the theory of General Rel-
ativity, we have studied the question whether two aligned, sub-extremal black holes
can be in equilibrium. The result of our above analysis, whose details can be found
in [2, 3, 4], is negative: there are no two-black-hole equilibrium configurations! The
idea of the non-existence proof is illustrated in Fig. 4 and can be summarized as
follows.

Equilibrium configurations with two aligned rotating black holes, if any existed,
can be described by a boundary value problem for two separate (Killing-) hori-
zons. Remarkably, this problem can be solved by integrating the Linear Problem
dΦΦΦ = (. . .)ΦΦΦ along the dashed contour as sketched in Fig. 2 or Fig. 4. Thus we ar-
rive necessarily at particular Kerr-NUT solutions which have two horizons [at least
according to the definitions (8) and (9)] and show the correct regular behaviour at
infinity and on the symmetry axis, whereas regularity off the axis is not guaranteed.
On the contrary, we find that all candidate solutions indeed do suffer from irreg-
ularities. One of them is the violation of the angular momentum-area inequality
8π|J| < A, which must hold for any regular sub-extremal black hole. However, we
could show that there is no choice of parameters for which angular momentum and
area of the two horizons jointly satisfy the inequality. Hence, there exists no regular
solution of the vacuum field equations for stationary two-black-hole configurations.
For brief comments on the extension of the non-existence proof to degenerate black
holes, see the following supplement and Fig. 5a.
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dΦ = (. . .)Φ + 8π|J| < A
Non-existence of

two-black-hole equilibrium

Fig. 4 Summary of the non-existence proof for two sub-extremal black holes.

5 Supplement

5.1 Degenerate horizons

The analysis as presented above only applies to configurations with two sub-
extremal (“extended”) horizons. But we have already indicated several times that
it is possible to extend the proof to configurations containing one or even two de-
generate black holes (with “point-like” horizons, where K1 = K2 or/and K3 = K4),
see Fig. 5a. In the first part of this supplement we give an outline of this generalisa-
tion. For details we refer to [3].

As already mentioned, the degeneracy of a Killing horizon to a point is merely a
peculiarity of the Weyl-Lewis-Papapetrou coordinates. In order to resolve the inter-
nal structure of the horizon, we have discussed the LP in polar coordinates centred
at the point-like horizon in [3]. Integrating the LP, we found that all possible equi-
librium configurations with degenerate black holes can be obtained as particular
limits of the double-Kerr-NUT family of solutions. It turned out that we obtain two
families of (two-parametric) solutions describing configurations with one degener-
ate and one extended horizon, whereas we found three (one-parametric) solution
families for configurations with two degenerate horizons. In order to exclude these
families as acceptable equilibrium configurations, we showed that they suffer from
unphysical singularities.

In the case of one degenerate and one sub-extremal black hole, the angular
momentum-area inequality becomes an equality for the degenerate horizon (which
turned out to be satisfied identically and, therefore, did not provide any new infor-
mation). But it still has to hold as an inequality for the sub-extremal black hole.
This restricts the parameters, but does not yet exclude the possibility of a regular
equilibrium configuration. Hence an additional ingredient was required for the de-
sired non-existence proof, which was the positivity of the total mass (ADM mass)
of the spacetime. As first shown by Schoen and Yau [34, 35], the mass of a regu-
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lar, asymptotically flat spacetime satisfying the dominant energy condition (which
is certainly satisfied for a black hole vacuum spacetime) is positive. However, for
the configuration in question, we found that the entire parameter range in which the
sub-extremal black hole satisfies the angular momentum-area inequality has a neg-
ative mass. Thus we could conclude that the solutions with one degenerate and one
sub-extremal horizon are singular.

Finally, we studied the three solution branches for configurations with two de-
generate horizons. One branch could be excluded since it has a negative ADM mass
for all possible parameter values. The other two branches have negative masses for
most parameter values, but there are small parameter regions with positive mass.
Fortunately, these solution branches are relatively simple and, by studying the so-
lutions of a certain quartic equation, it was possible to demonstrate explicitly that
singularities (singular rings around the ζ -axis) are present even in the parameter
range with positive ADM mass.

Hence we could extend the non-existence proof to all forms of horizons.

ζ ζ

Einstein-Maxwell
equations

⇔

3×3 Linear Problem

(a) (b) (c)

Fig. 5 Illustration of further BVPs that can be solved with the inverse scattering method: (a) two-
horizon problem with one degenerate black hole, (b) rigidly rotating disk of dust, (c) constructive
uniqueness proof for the Kerr-Newman black hole.

5.2 Further applications of the inverse method

In the following we briefly comment on some other applications of the inverse (scat-
tering) method to rotating objects. The integration of the Linear Problem of the Ernst
equation dΦΦΦ = . . . along a suitable closed contour was first practised to determine
the gravitational field of a rigidly disk of dust [36, 37, 38], see Fig. 5b. Among other
things, the solution (expressed in terms of theta functions) describes a parametric
collapse of the disk with a final phase transition to an extreme black hole.
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Obviously, the integration method under discussion can be used to construct the
Kerr solution as the unique solution of the one-horizon boundary problem [39]. This
corresponds to the methods of electrostatics and is an alternative to “complex tricks”
and other formal derivations of the Kerr metric in the textbooks.

Extending the vacuum examinations to Einstein-Maxwell fields, Meinel [40] has
recently constructed the Kerr-Newman solution by integrating a 3×3 electrovacuum
LP, see Fig. 5c and thus proved the uniqueness of the solution.
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13. G. Krenzer. Schwarze Löcher als Randwertprobleme der axialsymmetrisch-stationären
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