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Abstract We consider the geometry of spacetime based on a non-metric, Finslerian,
length measure, which, in terms of physics, represents a generalized clock. Our
definition of Finsler spacetimes ensure a well defined notion of causality, a precise
description of observers and a geometric background for field theories. Moreover we
present our Finsler geometric extension of the Einstein equations, which determine
the geometry of Finsler spacetimes dynamically.

1 Introduction

For a hundred years Lorentzian manifolds serve as geometric background for
physics. Equipped with the standard model of particle physics this led to the ex-
planation of a huge amount of observations. However, on this basis we have to
conclude that 96% of the universe are unknown; called dark matter and dark energy
[1]. Today most explanation attempts for this fact come from modifications of the
standard model of particle physics; but possibly a well controlled extension of the
geometric background for physics is able to shed light on the dark universe.

Here we present Finsler spacetimes which are capable to serve as generalized
geometric background for physics providing:

• a precise well-defined notion of causality,
• a notion of observers and their measurements,
• a geometric background for field theories,
• and gravitational dynamics consistent with general relativity.

Further details beyond this invitation can be found in our articles [2, 3].
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2 Finsler geometry and its causal structure

One of the fundamental measurements in physics is the measurement of time. Its
theoretical description is given by Einstein’s clock postulate: The time that passes
for an observer between two events is given by the length of the observers worldline
connecting the events. In case the geometry of spacetime is fundamentally deter-
mined by a metric this length is given by

S[x] =
∫

dτ
√

gab(x)ẋaẋb . (1)

The key idea for Finsler spacetimes is a more general description of the measure-
ment of time which still realizes the weak equivalence principle:

S[x] =
∫

dτF(x, ẋ) . (2)

It is based on a one-homogeneous function F on the tangent bundle which deter-
mines the geometry of spacetime. This so called Finsler geometry is a well known
mathematical framework which extends Riemannian metric geometry [4]. However
this standard Finsler geometry breaks down as soon as F has a non-trivial null-
structure Nx = {y ∈ TxM|F(x,y) = 0}. For generalizations of the Lorentzian metric
length measures we introduce our definition of Finsler spacetimes which ensure the
existence of a precise notion of causality and the existence of a well-defined geom-
etry.

The description of Finsler spacetimes requires the tangent bundle TM of the
spacetime manifold M. We consider the tangent bundle in manifold induced coordi-
nates (x,y) = Z ∈ T M,Z = ya∂a|x and its tangent spaces T(x,y)T M in the coordinate
basis {∂a =

∂
∂xa , ∂̄a =

∂
∂ya }.

A Finsler spacetime (M,L,F) is a smooth manifold M equipped with a continu-
ous function L : T M 7→ R such that

• L is smooth on the tangent bundle without the zero section T M \{0},
• L is reversible |L(x,−y)|= |L(x,y)|,
• L is positively homogeneous of degree r ≥ 2: L(x,λy) = λ rL(x,y),
• gL

ab =
1
2 ∂̄a∂̄bL is non-degenerate on T M \A, A ⊂ T M measure zero,

• ∀x∈M there exists a non-empty closed connected set Sx ∈ TxM where: |L(x,y)|=
1 and sign(gL

ab) = (ε,−ε,−ε,−ε) with ε = |L(x,y)|
L(x,y) .

The Finsler function F , which defines the geometric clock is a derived object and
defined as F = |L| 1

r ; the Finsler metric is gF
ab =

1
2 ∂̄a∂̄bF2.

Our definition of Finsler spacetimes guarantees a causal structure in each tan-
gent space: Sx is the shell of unit timelike vectors which defines a cone of timelike
directions with null boundary, as displayed in figure 1.

The geometry of Finsler spacetimes is solely derived from derivatives of L in
terms of the unique Cartan non-linear connection coefficients: Na

b = 1
4 ∂̄b(gLaq
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Fig. 1 Causal structure of Finsler spacetime.

(ym∂m∂̄qL−∂qL)). The connection between our definition of Finsler spacetimes and
standard Finsler geometry is given by the following theorem: Wherever L and F are
both differentiable they encode the same geometry, i.e. N[L] = N[F2].

3 Observers, Matter fields, and Gravity

The nonlinear connection coefficients split TTM and T*TM into horizontal and ver-
tical space by {δa = ∂a−Nb

a∂̄b, ∂̄a} and {dxa,δya = dya+Na
vdxb}, as displayed in

figure 2. The horizontal (co-)tangent space is identified with the (co-)tangent space
along the manifold directions.
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Fig. 2 Horizontal and vertical tangent space to the tangent bundle.

Timelike observers move on worldlines x(τ)∈ M with trajectory (x, ẋ)∈ T M and
ẋ in the cone of timelike vectors. A horizontal orthonormal frame defines their time
and space directions along the manifold {Ea} = {E0 = ẋaδa,Eα};gF

(x,ẋ)(Eµ ,Eν) =

−ηµν . Measurable quantities are components of horizontal tensors evaluated in this
frame at the observers’ T M position.

The geometry of Finsler spacetimes is built from tensors on T M; hence physical
fields coupling to this geometry will be of the same kind. Lagrange densities on T M
require the canonical Sasaki-type T M-metric G = −gF

ab(dxadxb + F−2δyaδyb),
which allows us to couple field theories to Finsler spacetime geometry as follows:
Choose an action for a p-form ϕ(x) on (M,g) : S[ϕ ,g] =

∫
M
√

gL (g,ϕ ,dϕ), use
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the Lagrangian for a zero homogenous p-form field Φ(x,y) on (T M,G), introduce
Lagrange multipliers to restrict the p-form field to be horizontal, integrate over the
unit tangent bundle Σ = {(x,y) ∈ T M|F(x,y) = 1} to obtain the p-form field ac-
tion Sm[Φ ,L,λ ] =

∫
Σ (
√

gF hFL (G,Φ ,dΦ)+λ (1−PH)Φ)|Σ . Variation yields the
equations of motion, the vanishing of all non horizontal components on shell and the
source term of the gravitational dynamics T|Σ . Our coupling principle ensures that in
case the Finsler spacetime is metric, field theories and gravitational dynamics equal
those of general relativity.

The geodesic deviation on Finsler spacetimes gives rise to a tensor causing rela-
tive gravitational acceleration ∇ẋ∇ẋV a = Ra

bc(x, ẋ)ẋbV c. This non-linear curvature
given by Ra

bc = δ[bNa
c] leads to the curvature scalar RF = Ra

abyb. No further de-
pendence on L or its derivatives appears, thus we choose RF as Lagrangian for
our Finsler gravity action S[L,Φ ] =

∫
Σ (
√

gF hFRF )|Σ + Sm[L,Φ ]. Variation with
respect to the L yields the Finsler gravity field equation

gFab∂̄a∂̄bRF − 6
F2 RF +2gF

ab
(
∇aSb +SaSb + ∂̄a(yq∇qSb)

)
=−κT|Σ . (3)

It contains the curvature scalar, a measure of the departure from metric geome-
try S, and a Finsler version of the Levi-Civita derivative. In case the function L is
the metric length measure the Finsler gravity equation is equivalent to the Einstein
equations.

4 Conclusion

We constructed a theory of gravity for spacetimes equipped with a general Finsler
length measure. In case the Finsler length equals the metric length our theory be-
comes general relativity, hence all solutions of the Einstein equations are solutions
to our Finsler gravity equation. The implications of Finsler spacetime gravity on the
dark universe can be studied by spherically symmetric and cosmological solutions
that go beyond metric geometry. A perturbative first order Finsler solution around
the Schwarzschild and Friedmann-Robertson-Walker metric is work in progress.
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