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Abstract The recently developed generalization of the Goldberg-Sachs theorem to
five-dimensional Einstein spacetimes is summarized. This generalization involves
two steps. First it has been proven that in arbitrary dimension an Eistein spacetime
admitting a multiple WAND admits also a multiple geodetic WAND. Second, in
five dimensions, the 3× 3 optical matrix of such geodetic multiple WAND can be
cast to one of three canonical forms, each determined by two free parameters.

1 Introduction

Recently a generalization of the Petrov classification of the Weyl tensor to arbitrary
dimension was developed [1] (see [2] for a recent review). It is thus natural to ask
whether the four dimensional Goldberg-Sachs (GS) theorem can be in some form
extended to higher dimensions.

In four dimensions GS theorem proved to be a very useful tool for studying and
constructing new, algebraically special solutions of the Einstein equations, e.g. the
Kerr solution [3]. It states that in a (non-conformally flat) Einstein spacetime1, a
null vector field is a repeated principal null direction (of the Weyl tensor) if, and
only if, it is geodetic and shear-free.

A higher dimensional analogue of the principal null direction (PND) of the Weyl
tensor is a so called Weyl Aligned Null Direction (WAND) which in four dimen-
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1 An Einstein spacetime is a solution of the vacuum Einstein equation, possibly with a cosmologi-
cal constant, i.e. with the Ricci tensor Rab = (R/d)gab in d dimensions.
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sions coincides with PND. We will say that a higher dimensional spacetime is alge-
braically special if it admits a multiple WAND (an analogue of a repeated PND).

In contrast with the four-dimensional case, higher dimensional Einstein space-
times may admit (only in type D spacetimes) non-geodetic multiple WANDs. How-
ever, it has been shown in [4] that such spacetimes also always admit geodetic
multiple WANDs. The higher dimensional generalization of the “geodetic” part of
the GS theorem thus reads [4]:

Proposition 1. An Einstein spacetime admits a multiple WAND if, and only if, it
admits a geodetic multiple WAND.

Therefore when considering algebraically special Einstein spacetimes without loss
of generality one can always choose a geodetic multiple WAND.

For the formulation of the “shearfree” part of the GS theorem we need to intro-
duce the (d −2)× (d −2) optical matrix ρi j

ρi j ≡ mµ
(i)m

ν
( j)∇νℓµ , (1)

corresponding to a geodetic null vector field ℓℓℓ coinciding with a multiple WAND
and with m(i) being orthonormal spacelike vectors orthogonal to ℓℓℓ.

In contrast with the four-dimensional case, algebraically special Einstein space-
times may admit multiple WANDs with non-vanishing shear2 and in fact in the
generic case shear is non-vanishing. Therefore a generalization of necessary3 con-
ditions on ρi j following from the existence of multiple WAND will not be straight-
worward and in the next section we will thus limit ourselves to the case of five
dimensions.

Let us conclude this section with mentioning some special classes of spacetimes
where the necessary conditions on ρi j following from the multiple WAND condi-
tion have been known in any dimensions.

1.1 Necessary conditions on ρi j for various special classes of
spacetimes

1.1.1 Types N and III

The multiple WAND in vacuum spacetimes of type N must be geodetic, the optical
matrix must have rank 2 and it can be put into a form [7]

ρρρ = b diag
([

1 a
−a 1

]
,0, . . . ,0

)
. (2)

2 Shear is defined as traceless symmetric part of the optical matrix.
3 Sufficient conditions on ρi j for ℓℓℓ to be a multiple WAND are not in full generality known, but
it has been shown [5, 6] that ρi j = 0 (Kundt class) and ρi j ∝ δi j (Robinson-Trautman class) are
examples of such sufficient conditions.
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The same form of ρρρ also applies to type III Ricci flat spacetimes [7] that either

• (i) are five-dimensional,
• (ii) satisfy a certain genericity condition [7],
• (iii) have a non-twisting multiple WAND (with vanishing rotation, i.e., a = 0).

Generalization of the above type N and III results from the Ricci-flat case to the
Einstein case is straightforward, see [8]. Note that ρi j of the form (2) is shearfree
for d = 4 but not for d > 4 (for b ̸= 0).

1.1.2 Kerr-Schild spacetimes

It can be shown [9, 10] that for Kerr-Schild (KS) spacetimes 4

gµν = ḡµν +Hkµ kν , (3)

with vanishing T00 ≡ Tabkakb component of the energy–momentum tensor the KS
vector k is a geodetic multiple WAND and the optical matrix can be put into a block
diagonal form

ρρρ = αdiag
(

1, . . .1,
1

1+α2b2
1

[
1−αb1

αb1 1

]
, . . . ,

1
1+α2b2

ν

[
1−αbν

αbν 1

]
,0, . . . ,0

)
. (4)

1.1.3 Asymptotically flat type II spacetimes

Similar result as above holds also for asymptotically flat type II spacetimes [11].
It can be shown that in this case ρρρ obeys the optical constraint

ρikρ jk ∝ ρ(i j), (5)

which in fact holds if and only if ρρρ can be put in the canonical form (4) by appro-
priately choosing the frame. Note that the optical constraint also holds in the type
N and III cases discussed above. In fact it turns out that in arbitrary dimension such
form of ρρρ is “prefered” and holds for generic algebraically special spacetimes (see
[12] for more precise formulation). Explicit examples of Einstein spacetimes with
all multiple WANDs violating the optical constraint are however also known [2].

4 ḡµν is a metric of constant curvature and KS vector k is null with respect to ḡµν and thus also
with respect to gµν .
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2 GS theorem in five dimensions

Let us now summarize main results of [12], where the necessary conditions for ℓℓℓ to
be a multiple WAND in a five-dimensional algebraically special Einstein spacetime
have been found:

Theorem 1. In a five-dimensional algebraically special Einstein spacetime that is
not conformally flat, there exists a geodetic multiple WAND ℓℓℓ and its optical matrix
can be put in one of the forms

i) b

 1 a 0
−a 1 0
0 0 1+a2

 , (6)

ii) b

 1 a 0
−a 1 0
0 0 0

 , (7)

iii) b

 1 a 0
−a −a2 0
0 0 0

 . (8)

If the spacetime is of type III or type N then the form must be ii).

Note that for b ̸= 0 matrices i), ii), iii) have rank 3, 2, 1, respectively, and for
b = 0 it is the Kundt spacetime. Only the case iii) with a ̸= 0 ̸= b does not satisfy
the optical constraint (5). However, it has been proven recently that this case cannot
occur for genuine type II spacetimes [13] (see also [14]) and for type D one can
show [12]

Proposition 2. A five-dimensional type D Einstein spacetime admits a geodetic mul-
tiple WAND violating the optical constraint if, and only if, it admits a non-geodetic
multiple WAND.

Note that all 5d Einstein spacetimes admitting a non-geodetic multiple WAND are
explicitly known [4]. It turns out that these spacetimes always admit another geode-
tic multiple WAND satisfying optical constraint and one can thus conclude

Proposition 3. A five-dimensional algebraically special Einstein spacetime always
admits a geodetic multiple WAND obeying the optical constraint.

Due to Theorem 1 the number of independent components of the optical matrix
ρρρ is reduced from 6 to 2 free parameters. This will lead to a considerable simpli-
fication of the GHP equations [8] and hopefully also to a discovery of new higher
dimensional algebraically special Einstein spacetimes.

Let us conclude with some known examples of Einstein spacetimes belonging to
the cases i) - iii) of the Theorem 1 [12]

• case i)
a ̸= 0: the Myers-Perry [15] black hole solution (cf. [16]) and in fact all non-
degenerate (i.e. detρρρ ̸=0) Einstein Kerr-Schild metrics with Minkowski or (A)dS
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background [9, 10], 5d Kaluza-Klein bubble obtained by analytic continuation of
a singly spinning Myers-Perry solution [17, 12];
a = 0: this case corresponds to the Robinson-Trautman class [6] and in five di-
mensions it reduces to the Schwarzschild-Tangherlini metric (possibly with a
cosmological constant).

• case ii)
a ̸= 0: product of a 4d Ricci-flat algebraically special twisting solution with a flat
5th direction, e.g., the Kerr black string (i.e. the product of the 4d Kerr solution
with a flat direction), or more generally warped product of a 4d algebraically
special Einstein spacetime with a 5th direction (with non-vanishing cosmologi-
cal constant);
a = 0: a direct or warped product of any 4d Einstein type II Robinson-Trautman
metric [18], e.g. the Schwarzschild black string solution.

• case iii)
Spacetimes belonging to this case are of type D ([13], see also [14]) and admit
a non-geodetic multiple WAND. All such metrics were determined in [4] – the
direct products dS3 ×S2 and AdS3 ×H2 or the analytical continuation of the 5d
Schwarzschild solution [19] (generalized to include a cosmological constant and
planar or hyperbolic symmetry)
a ̸= 0: a specific twisting geodetic multiple WAND, e.g., in dS3 ×S2, see [12];
a= 0: a non-twisting, expanding and shearing geodetic multiple WAND in dS3×
S2 or in the Kaluza-Klein bubble solution, see [12].
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