Higher-dimensional black holes

Harvey S. Reall

Abstract This article reviews black hole solutions of higher-dimensional General
Relativity. The focus is on stationary vacuum solutions and recent work on instabil-
ities of such solutions.

1 Introduction

General Relativity (GR) in D > 4 spacetime dimensions has been actively investi-
gated for more than a decade. There are several reasons for this interest in higher
dimensions, and higher-dimensional black holes in particular.

1. Statistical calculation of black hole entropy using string theory. This was first
done for certain D = 5 black holes [1]. Each entropy calculation is a check on
the theory, irrespective of the dimension. Hence the study of higher-dimensional
black holes is a worthwhile contribution to developing a theory of quantum
gravity.

2. The gauge/gravity correspondence [2] relates the properties of black holes in D
dimensions to strongly coupled, finite temperature, quantum field theory in D —
1 dimensions. This provides a way of calculating certain field theory quantities
which are very hard to determine by more traditional methods.

3. The possibility of producing tiny higher-dimensional black holes at colliders in
certain ’brane-world” scenarios [3].

4. Higher-dimensional black hole spacetimes might have useful mathematical
properties. For example, analytically continued versions of black hole solutions
have been used to obtain explicit metrics on compact Sasaki-Einstein spaces

[4].
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5. An explicit higher-dimensional solution might provide a clean example of some
important effect in GR. A nice example of this is the frame-dragging effect
exhibited by the “’black Saturn” solution (see below).

6. Progress in quantum field theory has been made by considering D different from
4, and fields different from those of the Standard Model. In the same spirit, per-
haps we will arrive at a better understanding of GR by allowing the parameter
D to take values other than 4 [5].

This article is a brief, selective, review of higher-dimensional black hole solu-
tions. The scope is limited to solutions of the vacuum Einstein equation without
cosmological constant. I shall discuss two types of black hole. (i) Black hole so-
lutions of Kaluza-Klein theory that are static in the higher-dimensional sense. This
includes black string solutions. (ii) Asymptotically flat black hole solutions. In each
case, there has been recent progress in demonstrating the existence of instabilities
of certain solutions and so special attention is given to this topic.

We close this introduction by presenting the simplest higher-dimensional black
hole, the D-dimensional Schwarzschild solution:
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where dQ}_, is the line-element on a unit round and the event horizon is at

r=ri.

2 Black holes in Kaluza-Klein theory

Consider vacuum GR with a compact Kaluza-Klein circle. We are interested in black
hole solutions of this theory which are asymptotically flat in a Kaluza-Klein sense,
which means that, at large distance in the non-compact directions, the metric ap-
proaches that of Minkowski space with a compact circle of circumference L:

ds® = —di* +dr? +r*dQ} ,+d7?,  z~z+L 2)

I shall describe the known static black hole solutions of this theory. For a more
detailed recent review see Ref. [6].

The simplest such black hole solution is the product of the (D — 1)-dimensional
Schwarzschild solution with a circle of circumference L. This gives a black string
solution for which cross-sections of the event horizon have topology S' x $°~3. In
the decompactified limit L — oo it gives a black string of infinite length.

Another solution of this theory describes a black hole of topology S”~2 local-
ized on the Kaluza-Klein circle. Such solutions are not known explicitly. Solutions
describing black holes with radius much smaller than L have been constructed per-
turbatively [7, 8]. Larger black hole solutions have been constructed numerically
for D =5,6 [9, 10]. They cannot become arbitrarily large: there is an upper bound
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on their mass determined by L. In fact, as one moves along this family of solu-
tions, starting from a small black hole, the mass increases to a maximum and then
decreases [10, 11].

The higher-dimensional Schwarzschild solution is stable against linearized gravi-
tational perturbations [12]. However, black strings suffer from the Gregory-Laflamme
(GL) instability [13]. If r,. /L is less than a certain D-dependent critical value then
there exist linearized gravitational perturbations which grow exponentially with
time. These perturbations break the translational symmetry around the KK circle.
If r1 /L exceeds the critical value then the string is believed to be stable. So “’thin”
strings are unstable and “fat” strings are stable. Taking the limit L — oo shows that
uncompactified black strings are unstable.

Since its discovery, the nonlinear evolution of this instability has been the subject
of considerable debate. It was first proposed that the black string would “’pinch off”
to form a localized KK black hole or holes [13]. This cannot happen classically
owing to the result that black holes cannot bifurcate. Instead, a singularity would
have to form at the horizon at the moment of the pinching off, but perhaps this is
resolved by quantum effects.

Recent numerical simulations (with D = 5) support this picture [14]. These start
from a perturbation which is sinusoidal along the flat direction. When evolved, the
perturbation becomes more inhomogeneous, with the configuration reaching a tran-
sient state resembling a line of localized black holes connected by thin threads of
black string. However, these threads are in turn unstable and suffer the Gregory-
Laflamme instability, but on a shorter timescale, leading to smaller black holes
connected by even thinner strings. The process appears to continue on smaller and
smaller scales, in a self-similar manner, but in a finite total time as measured by
an observer far from the string. The curvature of (parts of) the horizon becomes
large in this process, so it seems that a naked singularity does indeed form. This is
strong evidence against the validity of the cosmic censorship hypothesis in higher
dimensions.

The black strings described above are invariant under translations around the KK
circle. For this reason they are called uniform black strings. Some time ago, it was
conjectured that there should exist a 1-parameter family of static nonuniform black
strings which lack this translational symmetry, and bifurcate from the uniform black
string family at the critical value of r /L discussed above [15]. Such solutions were
subsequently constructed perturbatively, for infinitesimal non-uniformity [16]. Fully
nonlinear solutions have been constructed numerically [17, 18, 19, 20]. Just like the
localized KK black holes, there is an upper bound on their mass determined by L.

Ref. [21] conjectured that the families of localized KK black hole solutions and
non-uniform black strings should merge at a common limiting solution. The idea is
that, moving along the family of localized black holes, they increase in size until
they fill the KK circle, and then transition to a black string of high non-uniformity.
Numerical evidence supporting this suggestion was obtained in Refs. [9, 10, 11].

The perturbative construction of non-uniform black strings reveals that, for
D < 13, infinitesimally non-uniform black strings have lower horizon area than a
uniform black string of the same mass, whereas for D > 13, they have greater hori-
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zon area [22]. This suggests that infinitesimally non-uniform black strings should
be classically unstable for D < 13 but stable for D > 13. It also suggests that a
non-uniform black string could be an endpoint of the GL instability for D > 13.

Very recently, Ref. [20] has performed the first study of the stability of non-
uniform black strings with finite non-uniformity. The results confirm the perturba-
tive results for infinitesimal non-uniformity. It was found that the instability persists
to large non-uniformity for D < 11. Strong evidence that non-uniform strings with
D > 13 are all stable was presented. Solutions with D = 12,13 were constructed for
the first time in Ref. [20]. It was found that there is a maximum mass as one moves
along the family of non-uniform black strings. Solutions before the maximum are
unstable whereas solutions after the maximum appear to be stable, and can have
greater horizon area than a uniform string of the same mass.

Properties of these different solutions can be summarized in a plot of horizon area
against mass, for fixed L. This is useful in understanding possible time evolution of
instabilities of the various solutions. Horizon area increases, and energy decreases
(via emission of gravitational waves) so the final state of an instability must lie up
and left” of the initial state on such a diagram.

Fig. 1 shows the qualitative form of a plot of horizon area against mass for the
cases D = 5,6 (see Ref. [6] for a more quantitative plot). Recall that there is a
maximum mass solution along the localized black hole branch of solutions. By the
first law, an extremum of the mass must also be an extremum of horizon area, and
this results in the cusp shown in the figure.

The stability of localized black holes has not been studied. This could be done
using the method of Ref. [20]. This method shows that an instability appears as
one moves through a maximum of mass along a branch of solutions. Since small
localized black holes are expected to be stable, it seems likely that, moving along the
branch of solutions, they will be stable until the maximum is reached and unstable
thereafter. Hence, in Fig. 1, unstable solutions lie on the part of the uniform string
curve extending from the origin to the GL point, along the non-uniform string curve
from the GL point to the merger point, and then along the localized black hole curve
from the merger point to the cusp.

For D = 12, 13, the change in behaviour of the non-uniform string branch implies
that the diagram must change to that of Fig. 2 where the cusp now appears along
the non-uniform black string branch. (Note that localized black hole solutions have
not been constructed for D > 6 so this part of the Figure is conjectural.) In this case,
unstable solutions lie on the part of the uniform string curve extending from the
origin to the GL point and along the non-uniform string curve from the GL point to
the cusp.

The results of Ref. [20] suggest that there is no maximum mass non-uniform
black string for D = 11. Hence it seems likely that Fig. 1 gives the behaviour for all
D <11.

For D > 13, the results for non-uniform black strings, and the simplest guess for
the behaviour of localized black holes, results in the phase diagram shown in Fig.
3. Unstable solutions lie on the part of the uniform string curve extending from the
origin to the GL point.
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Fig. 1 Schematic plot of horizon area against mass for Kaluza-Klein black holes/strings with D =
5,6 based on results of Refs [10, 11]. The dashed curve is the uniform black string branch, the
solid curve the non-uniform string branch and the dotted curve the localized black hole branch. It
seems likely that this will be the qualitative behaviour for all D < 11. (Plot reproduced from Ref.
[201.)
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Fig. 2 Schematic plot of horizon area against mass for Kaluza-Klein black holes/strings with D =
12,13 based on results of Ref. [20]. The localized black hole curve is conjectural. (Plot reproduced
from Ref. [20].)
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Fig. 3 Schematic plot of horizon area against mass for Kaluza-Klein black holes/strings with D >
13 based on results of Ref. [20]. The localized black hole curve is conjectural. (Plot reproduced

from Ref. [20].)

3 Asymptotically flat black holes

3.1 Introduction

For a comprehensive 2008 review of higher-dimensional black holes, see Ref. [5].
For more recent reviews, see Refs. [23, 24].

Recall that angular momentum is defined in terms of an antisymmetric matrix J;;
where i, j run over the D — 1 spatial dimensions (e.g. for a particle, J;; = x;p; — x;p;).
For D =4, J;; is equivalent to a vector J; and so, by choosing z-axis aligned with this
vector, one can write J;; in terms of a single component J. For D > 4 dimensions,
the best one can achieve by a choice of axes is a block-diagonal form for J;; where
each block is a 2 x 2 antisymmetric matrix specified by a component J;, where

I=1,...N=[(D-1)/2].

There are two families of explicit black hole solutions of the vacuum Einstein
equation in D > 4 spacetime dimensions: Myers-Perry black holes [25] and black

rings [26, 27].
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3.2 Myers-Perry black holes

The Myers-Perry solution is the generalization of the Kerr solution to D space-
time dimensions. See Ref. [28] for a more detailed review. Myers-Perry black holes
share many properties with the Kerr solution. Cross-sections of the event horizon
have spherical topology S”~2. The solution is uniquely parameterized by its mass M
and its angular momenta J;. The general Myers-Perry solution has N = [(D — 1) /2]
commuting rotational Killing vector fields d/d¢;. The Myers-Perry solution with
all J; = 0 reduces to the D-dimensional Schwarzschild solution.

Recall that, for given M, the Kerr solution has an upper bound on its angular
momentum |J| < M? and saturating this bound gives the extreme Kerr solution with
a regular, but degenerate horizon. For D =5, there is a similar upper bound on the
angular momenta of the MP solution: for given M, regular black holes have J;,J,
confined to a square region centred on the origin in the (J;,J>) plane, see Figure.
4. Saturating this bound gives a black hole with a degenerate horizon except when
one of the angular momenta vanishes (the vertices of the square), in which case the
spacetime is singular with no horizon.

(a) (b)

Fig. 4 Parameter space of Myers-Perry black holes for (a) D =5 and (b) D = 6. The axes are
dimensionless angular moment j; ~ JyM~(P=2)/(D=3) Non-extreme black holes correspond to the
shaded region. The boundary of this region corresponds to extreme black holes, except for the
vertices of the square, which describe singular solutions. (Plot reproduced from Ref. [5].)

For D > 5, there is a qualitative difference between MP and Kerr. It is possible for
the angular momenta to be arbitrarily large for fixed M. A ”singly spinning” black
hole, i.e., one with J, = J3 = ... = Jy =0, has no upper bound on J;. More generally,
it is possible for some of the angular momenta to be very large if others are small.
See Figure 4 for the D = 6 case. Ref. [29] studied the geometry of singly spinning
MP black holes in the “ultraspinning” limit of very large rotation. It was found that
the black hole becomes flattened into the plane of rotation, so that it resembles a
rotating pancake. The geometry near the intersection of the axis of rotation with the
horizon approaches that of a black membrane: the product of a (D —2)-dimensional
Schwarzschild solution with two flat directions. Black membranes suffer from the
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Gregory-Laflamme instability. Hence it was conjectured in Ref. [29] that rapidly
rotating D > 5 MP black holes are classically unstable.

Confirmation of this conjecture required a study of linearized gravitational per-
turbations of MP solutions. For D = 4, the study of gravitational perturbations of
a Kerr black hole is simplified by the remarkable “decoupling” phenomenon dis-
covered by Teukolsky [30], which reduces the problem to a PDE for a single scalar
quantity. Unfortunately, decoupling does not occur for D > 4 [31] and so one has to
solve a large set of coupled PDEs instead. This was done in Ref. [32], which studied
a class of linearized perturbations of a singly spinning MP solution, restricting to
perturbations that preserve the symmetries of the MP solution, i.e., stationarity and
the rotational symmetries. For fixed M, it was found (numerically) that there exists
a critical value of J; for which a singly spinning D > 5 MP solution admits a non-
trivial stationary linearized gravitational perturbation. This was interpreted as the
’threshold mode” indicating the onset of the ultraspinning instability of Ref. [29],
i.e., black holes with larger J; should be unstable.

There is a more symmetrical class of MP solutions: those with odd D and J; =
Jo = ... =Jy =J. Such solutions are cohomogeneity-1": they depend non-trivially
only on the radial coordinate. This implies that the equations governing gravitational
perturbations are ODEs rather than PDEs [33]. However, in this case, there is an
upper (extremality) bound on J for given M, i.e., there is no reason to expect an
ultraspinning instability. The D = 5 case was studied in Ref. [34] and no evidence
of any instability was found. However, Ref. [35] showed that, for D = 9, with J
close to the upper bound, there are linearized gravitational perturbations which grow
exponentially with time, i.e., an instability. This was extended to D = 7 in Ref. [36],
which also considered a class of MP solutions interpolating between singly spinning
and cohomogeneity-1 and determined the threshold of instability in this case.

Although decoupling of perturbations does not occur for higher-dimensional
black holes, it does occur for the near-horizon geometry of an extreme vacuum
black hole [31]. Ref. [37] used this to argue that the instability of near-extreme
cohomogeneity-1 MP solutions can be predicted analytically, thereby extending the
result to any odd D > 5. Ref. [38] used the same approach to show that MP solutions
with even D and J; = J, = ... = Jy (which are cohomogeneity-2) also are unstable
near extremality.

The perturbations discussed so far are invariant under the Killing vector field
Q;0/d¢; where Q are the angular velocities of the horizon.! This makes the re-
sulting equations easier to solve. In the singly spinning case, this means that the
perturbations are axisymmetric. Nonaxisymmetric perturbations of singly spinning
MP have been studied using full-blown numerical relativity [39, 40].

Ref. [39] studied the D = 5 case and found that, for J; near to the upper
bound, an initially small non-axisymmetric perturbation grows in amplitude. It
was not possible to evolve the system long enough to determine the endpoint of
this instability. The corresponding problem for D = 6,7,8 was studied in Ref.
[40]. An instability was found for large enough dimensionless angular momentum

! The exception is the analysis in Ref. [34] of the cohomogeneity-1 D = 5 case, i.e., J; = J,. The
results are consistent with stability of this solution.
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1= M —(D=2)/(D=3) Thjs instability appears at a lower value of j; than the axi-
symmetric instability discussed above, i.e., the nonaxisymmetric instability is the
first one to appear as the angular momentum is increased. In this case, it was possi-
ble to follow the long time evolution of the instability. It was found that the perturbed
black hole emits gravitional waves, which carry away angular momentum (and en-
ergy), and the black hole finally settles down to a (presumably stable) Myers-Perry
black hole with a lower value of jj. It is not clear whether this also happens for
D =5 or whether the evolution of the instability is qualitatively different in this
case.

Finally we should note that there is an instability that afflicts extreme black holes,
including extreme Myers-Perry. Consider a massless scalar field in the background
of a Kerr black hole. In the non-extreme case, it has been proved that, for any ini-
tial data (decaying at infinity), the scalar field and all its derivatives decay on, and
outside, the horizon [41]. However, the extreme case is qualitatively different. For
axisymmetric initial data, the scalar field decays on, and outside, the event horizon
[42]. However, a transverse derivative of the scalar field at the horizon generically
does not decay (hence the energy-momentum tensor does not decay), and higher
transverse derivatives at the horizon blow up, i.e., they become large at late time
[43]. Therefore the scalar field is stable in the background of an arbitrarily non-
extreme black hole, but unstable in the background of an exactly extreme black
hole. Note that the instability involves power-law, rather than exponential, growth
in time.

The scalar field here should be regarded as a toy model for linearized gravita-
tional perturbations, which suggests that an extreme Kerr black hole should suffer a
gravitational instability. Ref. [44] showed that this is indeed the case. This reference
also showed that similar non-decay and blow-up results hold for a massless scalar
field in any extreme black hole spacetime. Hence extreme black holes generically
are unstable, as conjectured in Ref. [45].

3.3 Black rings

A black ring is an asymptotically flat black hole for which horizon cross-sections
have topology S' x SP~3. There is a heuristic argument for the existence of such ob-
jects in vacuum gravity. Take a finite segment of (uniform) black string and imagine
forming it into a loop. The loop would collapse under its own gravity and tension.
However, if it rotates then Newtonian arguments suggest that the resulting centrifu-
gal repulsion can balance the gravitational and tension forces, resulting in a station-
ary black ring.

This heuristic argument for the existence of black rings is confirmed by explicit
solutions, which are known only for the special case D = 5 [26, 27]. These solutions
are the first examples of asymptotically flat black holes with horizon cross-sections
of non-spherical topology. They form a 3-parameter family and have 2 commut-
ing rotational symmetries. Unlike the Myers-Perry solutions, black rings are not
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uniquely labelled by M and J;: it is possible for there to be two black rings with the
same values for these quantities. Furthermore, a black ring can have the same value
for M, J; as a Myers-Perry black hole. See Fig. 5. Hence the existence of black rings
shows that black hole uniqueness cannot be straightforwardly extended to higher
dimensions.

J1

Fig. 5 Phase space of D = 5 Myers-Perry black holes and black rings. See Fig. 4 for notation. For
each point of the light grey regions there exists a “thin” black ring. For each point of the mid-grey
region there exists a MP black hole. For each point of the dark grey region there exists a MP black
hole, a fat black ring and a thin black ring. (Plot reproduced from Ref. [5].)

An important difference between black rings and D = 5 MP solutions is that, for
given M, there is a lower bound on the angular momentum J;, and (for J, = 0) no
upper bound. Black rings do not admit a regular static limit, as expected from the
heuristic argument for their existence.

It is convenient to divide black rings into two subclasses according to the sign
of the heat capacity at constant angular momenta c¢;. Black rings with ¢; < 0 are
called ’thin” and those with ¢; > 0 are called "fat”. The terminology arises from the
geometry of the horizon. Thin rings look more like hula-hoops and fat rings more
like bagels. Rings of each type are uniquely labelled by M, J;.

Heuristic arguments indicate that fat black rings probably are unstable. Ref. [46]
used the Poincaré turning point method to argue that fat black rings with small c;
should have one more “unstable mode” than thin rings. Ref. [47] considered certain
singular deformations of the black ring solution to determine an effective potential
for radial deformations of the ring. It was found that thin rings sit at a local minimum
of the potential but fat rings correspond to a local maximum, suggesting instability.
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These results were confirmed by the analysis of Ref. [48], which introduced a
new method for studying black hole stability. If a black hole is stable then any small
perturbation of it must eventually settle down to a black hole belonging to the same
family, with a small change in its parameters. If one restricts to rotationally symmet-
ric perturbations, so that angular momentum is conserved, then, by using increase of
horizon area and decrease of (Bondi) energy, one can deduce that the initial data de-
scribing the perturbed black hole must satisfy a certain inequality relating its mass,
angular momenta and horizon area. If one can find an initial perturbation that vio-
lates this inequality then the black hole cannot be stable. The nice thing about this
method is that it requires only the construction of initial data, rather than determin-
ing the full time-evolution of the perturbation. Using this approach, it was shown
that fat black rings suffer from a rotationally symmetric instability.

Rings with large J; (for given M) are very thin. As J; — oo, the geometry near a
section of the ring approaches that of a boosted uniform black string. Since the latter
suffers from the Gregory-Laflamme instability, it seems very likely that black rings
with large J; will be classically unstable. This instability breaks rotational symmetry
so it cannot be studied using the approach of Ref. [48]. Demonstrating the existence
of this instability will require a study of linearized gravitational perturbations of
black rings (or full-blown numerical GR). This has not yet been attempted.

In summary, fat black rings are known to be unstable and very thin black rings
are believed to be unstable. But it is not known whether all black rings are unstable
or whether some thin, but not too thin, rings are stable.

So far we have been discussing D = 5 black rings. Explicit black ring solutions
are not known for D > 5. However, approximate solutions describing very thin
black rings have been constructed using the perturbative “’blackfold” approach to
be described below [49]. Recently, Ref. [50] reported a breakthrough in determin-
ing D > 5 dimensional black ring solutions by numerical solution of the Einstein
equation. Results were presented for black rings with D = 6,7 with a single non-
vanishing angular momentum J;. Their properties appear similar to those of D =5
black rings, and agree with the predictions of the blackfold approach when the ra-
dius becomes large.

3.4 Black Saturn and generalizations

Given the existence of black rings and Myers-Perry black holes, it is natural to ask
whether one can “superpose” these solutions to construct a "Black Saturn” describ-
ing a MP black hole with a concentric black ring. Of course the Einstein equation is
nonlinear so this is highly non-trivial. Nevertheless, solution generating techniques
have been used to construct such a solution with D =5 [51].

Black Saturn is the first example of an explicit stationary, asymptotically flat,
vacuum, regular, multi-black hole solution. It provides an interesting demonstration
of the frame-dragging effect: if one sets the (Komar) angular momentum of the
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MP black hole to zero then its angular velocity is non-zero because the horizon
generators are dragged around by the rotation of the black ring.

Solution generating techniques have also been used to construct solutions with
multiple concentric black rings. For example the di-ring of Refs. [52, 53] describes
a pair of concentric black rings lying in the same plane. Ref. [54] gave a solution
describing a pair of concentric black rings lying in orthogonal planes.

3.5 Classification of asymptotically flat black holes

For D = 4, the black hole uniqueness theorem provides a complete classification
of stationary vacuum black holes. For D > 4, the known solutions show that the
situation is much more complicated and the uniqueness theorem does not generalize
in a simple way. However, it is useful to explore whether some aspects of the D =4
theorem can be generalized to D > 4.

Uniqueness of static vacuum black holes turns out to generalize straightforwardly
to D > 4: the only asymptotically flat static vacuum black holes solution is the
Schwarzschild solution, for any D > 4 [55].

For non-static black holes, the first logical step in the D = 4 uniqueness theorem
is Hawking’s topology theorem [56], stating that horizon cross-sections must have
S topology. This result has been generalized to D > 4 dimensions, with the result
that horizon cross-sections must admit a metric of positive scalar curvature [57].
This is a topological restriction on the horizon. For D = 4 it reduces to Hawking’s
result. For D = 5 it implies that the horizon cross-section must be either $* (or
a quotient), S' x S2, or a connected sum of these. It is striking that S*> and S' x
S are precisely the topologies realized by the known Myers-Perry and black ring
solutions. However, the possibility of taking quotients and connected sums implies
that there are infinitely many topologies consistent with this theorem. For D > 6,
there is no simple description of the possible topologies.

The next step in the D = 4 uniqueness proof for non-static black holes is Hawk-
ing’s rigidity theorem [56], the statement that a stationary, rotating, analytic, black
hole solution must be axisymmetric. This has been generalised to D > 4: a station-
ary, rotating, analytic, black hole solution must admit a rotational symmetry (a U (1)
isometry acting as a rotation at infinity) [58, 59]. However, this theorem guarantees
only one rotational symmetry whereas the known explicit solutions have N > 1 com-
muting rotational symmetries, i.e., more symmetry than guaranteed by the theorem.
This suggests that there may exist other D > 4 black hole solutions which have less
symmetry than the known solutions. We will discuss this further in the next section.

Progress with classifying black holes can be made if one restricts attention to
the case of multiple rotational symmetries. The classification of D = 5 stationary
rotating vacuum black holes with two rotational symmetries was studied in Ref.
[60] (extending [61]). It was shown that two such solutions are isometric if, and
only if, they have the same mass, angular momenta, and rod structure. The latter
(introduced in Refs. [62, 63]) encodes the angular velocity of the horizon and the
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nature of “axes of rotation” in the spacetime. The assumed symmetries imply that
the horizon topology must be S, S x 2 or a lens space (a quotient of $*). It is not
known whether (asymptotically flat) solutions of the latter kind exist.

3.6 Perturbative solutions

Given the difficulty in finding explicit solutions of the Einstein equation, pertur-
bative techniques have been used to obtain some insight into what other solutions
might exist. Of particular interest are the possible topologies of higher-dimensional
black holes, and the question of whether there exist higher-dimensional black holes
with just one rotational symmetry. Two techniques have been used to investigate
these questions.

The “blackfold” technique is a method for constructing black hole solutions
whose horizons exhibit a large hierarchy of length scales. An example is a black
ring for which the S! radius is much greater than the SP~3 radius [49]. Such
large-radius black ring solutions are constructed perturbatively as an expansion in
the ratio of these radii. More generally, the blackfold method has been used to
construct approximate higher-dimensional solutions with topologies of the form
SP1x SP2 x ... x §PK x s1 where py,...pg are odd, g > 2, SP1 ... SPk are large radius
spheres and s? is a small radius sphere [64].

The blackfold approach has also been used to construct solutions with just one
rotational symmetry. Ref. [65] presented a perturbative solution describing a D =5
helical” black ring. This solutions can be visualised by imagining a spring formed
into a loop.

Another perturbative approach is to study linearized perturbations of an explicit
solution. Non-uniform black strings provide a nice example of this. A uniform
black string admits a time-independent linearized perturbation corresponding to the
’threshold mode” of the Gregory-Laflamme instability. This time-independent per-
turbation exists precisely at the point where the non-uniform black string family
bifurcates from the uniform string family. It corresponds to a non-uniform string so-
lution with infinitesimal non-uniformity. Thus by studying linearized perturbations
of the uniform string one can infer the existence of the non-uniform string family.

This method has been applied to perturbations of Myers-Perry black holes. Con-
sider a singly spinning MP black hole with D > 5. As explained above, Ref. [32]
showed that there is a critical J; (for given M) at which such a solution admits a
non-trivial time-independent linearized perturbation, corresponding to the threshold
mode of the ultraspinning instability. Earlier, Ref. [29] had suggested that such a
perturbation should be interpreted as evidence for a new family of black holes that
bifurcates from the MP family. This new family would possess the same symme-
tries as the MP solution but with a slightly deformed horizon, corresponding to a
depression at the poles of the sphere. It was suggested that moving along this new
branch of solutions, the depression would increase, corresponding to an increasingly
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“pinched” sphere. Eventually, the sphere is expected to pinch off” completely, and
merge with the black ring family [49].

The same strategy has been applied to perturbations of cohomogeneity-1 MP
black holes (odd D with J; =J, = ... =Jy). Recall that Refs. [35, 36] demonstrated
an instability of such solutions near extremality. Again there is a time-independent
threshold mode for this instability and so this was interpreted as evidence for a
new branch of solutions bifurcating from the MP family. However, in this case, the
threshold mode does not preserve the symmetries of the background geometry. In
general it preserves only the rotational symmetry whose existence is guaranteed
by the rigidity theorem. Hence the new family of solutions should have just one
rotational symmetry. Note that these black holes would have spherical topology.
Furthermore, in this case, there is not just one threshold mode but a multi-parameter
set of them. If each of these extends to the new branch of solutions then these new
solutions would have many more parameters than the MP family. For example, in
D =9 they would have 70 parameters [35], many more than the 5 parameters of the
MP solution.
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