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Abstract Numerical relativity has made big strides over the last decade. A number
of problems that have plagued the field for years have now been mostly solved. This
progress has transformed numerical relativity into a powerful tool to explore funda-
mental problems in physics and astrophysics, and I present here three representative
examples. These “three little pieces” reflect a personal choice and describe work
that I am particularly familiar with. However, many more examples could be made.

1 Introduction

Numerical relativity has hardly seen better times before. Over the last few years, in
fact, a truly remarkable development has shaken the field. Starting from the first sim-
ulations showing that black-hole binaries could be evolved for a few orbits [1, 2, 3],
or that black-hole formation could be followed stably using simple gauges and with-
out excision [4], new results, some awaited for decades, have been obtained steadily.
As a direct consequence of this “Renaissance”, it is now possible to simulate binary
black holes [5] and binary neutron stars [6] accurately for dozens of orbits, from the
weak-field inspiral, down to the final black-hole ringdown (see also [7, 8] for recent
reviews).

There are several reasons behind this rapid progress. These include the use
of more advanced and accurate numerical techniques [9, 10], the availability of
larger computational facilities, but also the development of formulations of the Ein-
stein equations and gauges that are particularly well-suited for numerical evolu-
tions [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. The phase transition that has taken
during this year has radically changed numerical relativity, freeing it from the corner
of idealised investigations. Most importantly, it has transformed numerical relativ-
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ity into a research area where long-standing problems can found a quantitative and
accurate solution, and into a tool by means of which it is possible to explore funda-
mental aspects of physics and astrophysics.

Numerous examples could be given to testify this transformation, although I will
report here only those that I am particular familiar with. More specifically, in what
follows I will discuss: (i) how numerical simulations of magnetised neutron stars
provide convincing evidence that this process leads to the conditions that are ex-
pected behind the phenomenology of short gamma ray burst; (ii) how numerical
simulations of the head-on collision of selfgravitating fluids boosted at relativistic
speeds can be used to understand the conditions leading to the formation of a black
hole and provide a dynamical version of the hoop conjecture; (iii) how the study of
the local properties of apparent horizons can be used to explain bizarre behaviours
in binary black-hole simulations and can be effectively correlated with a portion of
the spacetime infinitely far away: J +. This selection is by no means comprehen-
sive, but rather a very personal one, and I apologise in advance for not discussing
all the excellent work that cannot find space in this contribution.

2 First piece: From neutrons star to gamma-ray bursts

The numerical investigation of the inspiral and merger of binary neutron stars in
full general relativity has seen enormous progress made in recent years. Crucial
improvements in the formulation of the equations and numerical methods, along
with increased computational resources, have extended the scope of early simu-
lations. These developments have made it possible to compute the full evolution,
from large binary-separations up to black-hole formation, without and with mag-
netic fields [22, 6, 23, 24, 25, 26], and with idealised or realistic equations-of-state
[27, 28]. This tremendous advancement is also providing information about the en-
tire gravitational waveform, from the early inspiral up to the ringing of the black
hole (see, e.g., [29, 30, 31]). Advanced interferometric detectors starting from 2014
are expected to observe these sources at a rate of ∼ 40−400 events per year [32].

These simulations also probe whether the end-product of mergers can serve as
the “central engine” of short gamma-ray bursts (SGRBs) [33, 34, 35]. The prevalent
scenario invoked to explain SGRBs involves the coalescence of a binary system of
compact objects, e.g., a black hole and a neutron star or two neutron stars [36, 37,
38, 39]. After the coalescence, the merged object is expected to collapse to a black
hole surrounded by an accretion torus. An essential ingredient in this scenario is the
formation of a central engine, which is required to launch a relativistic outflow with
an energy of ∼ 1048 −1050 erg on a timescale of ∼ 0.1−1 s [38, 39].

The qualitative scenario described above is generally supported by the associ-
ation of SGRBs with old stellar populations, distinct from the young massive star
associations for long GRBs [40, 41]. It is also supported to a good extent by fully
general-relativistic simulations, which show that the formation of a torus of mass
Mtor ≲ 0.4M⊙ around a black hole with spin J/M2 ≃ 0.7− 0.8, is inevitable [27].
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In addition, recent simulations have also provided the first evidence that the merger
of a binary of modestly magnetised neutron stars naturally forms many of the con-
ditions needed to produce a jet of ultrastrong magnetic field, with properties that
are broadly consistent with SGRB observations. This missing link between the as-
trophysical phenomenology of GRBs and the theoretical expectations is a genuine
example of the new potential of numerical relativity and I will discuss it in detail
below1.

2.1 The numerical setup

It is not useful to discuss here in detail the numerical setup and the technical de-
tails of the numerical codes used in these calculations. These details can be found
in Refs. [43, 26], while a description of the physical initial data was presented in
Ref. [42]. It is sufficient to recall here that the evolution of the spacetime is ob-
tained using a three-dimensional finite-differencing code providing the solution of
a conformal traceless formulation of the Einstein equations [44] (i.e., the CCATIE
code). The equations of general-relativistic magnetohydrodynamics (GRMHD) in
the ideal-MHD limit are instead solved using a code code [45, 46, 43] which adopts
a flux-conservative formulation of the equations as presented in [47] and high-
resolution shock-capturing schemes (i.e., the Whisky code). In order to guaran-
tee the divergence-free character of the MHD equations the flux-CD approach de-
scribed in [48] was employed, although with the difference that the vector potential
is used as evolution variable rather than the magnetic field. Both the Einstein and the
GRMHD equations are solved using the vertex-centred adaptive mesh-refinement
(AMR) approach provided by the Carpet driver [49]. In essence, the highest-
resolution refinement level is centred around the peak in the rest-mass density of
each star and in moving the “boxes” following the position of this maximum as the
stars orbit. The boxes are evolved as a single refinement level when they overlap.
The calculations were carried out using six levels of mesh refinement with the finest
level having a resolution of ∆ = 0.1500M⊙ ≃ 221m.

From a physical point of view, the initial data is given by a configuration that
could represent the properties of a neutron star-binary a few orbits before their co-
alescence. More specifically, we simulate two equal-mass neutron stars, each with
a gravitational mass of 1.5M⊙ (i.e., sufficiently large to produce a black hole soon
after the merger), an equatorial radius of 13.6km, and on a circular orbit with initial
separation of ≃ 45km between the centres (all lengthscales are coordinate scales).
Confined in each star is a poloidal magnetic field with a maximum strength of
1012 G. At this separation, the binary loses energy and angular momentum via emis-
sion of gravitational waves, thus rapidly proceeding on tighter orbits as it evolves.

1 Much of what follows is taken from the discussion presented in Ref. [42].
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2.2 The basic dynamics

After about 8ms (∼ 3 orbits) the two neutron stars merge forming a hypermas-
sive neutron star (HMNS), namely, a rapidly and differentially-rotating neutron star,
whose mass, 3.0M⊙, is above the maximum mass, 2.1M⊙, allowed with uniform
rotation by an ideal-fluid equation of state (EOS)2, p = (Γ − 1)ρε , where ρ is the
baryonic density, ε the specific internal energy, and Γ = 2 with an adiabatic index
of 2. Being metastable, a HMNS can exist as long as it is able to resist against
collapse via a suitable redistribution of angular momentum [e.g., deforming into
a “bar” shape [22, 6]], or through the increased pressure-support coming from the
large temperature-increase produced by the merger. However, because the HMNS is
also losing angular momentum through gravitational waves, its lifetime is limited to
a few ms, after which it collapses to a black hole with mass M = 2.91M⊙ and spin
J/M2 = 0.81, surrounded by a hot and dense torus with mass Mtor = 0.063M⊙ [26].

These stages of the evolution can be seen in Fig. 1, which shows snapshots of
the density colour-coded between 109 and 1010 gr/cm3, and of the magnetic field
lines (green on the equatorial plane and white outside the torus). Soon after the
black hole formation the torus reaches a quasi-stationary regime, during which the
density has maximum values of ∼ 1011 g/cm3, while the accretion rate settles to
Ṁ ∼ 0.2M⊙/s. Using the measured values of the torus mass and of the accretion
rate, and assuming the latter will not change significantly, such a regime could last
for taccr ≃ Mtor/Ṁ ≃ 0.3 s, after which the torus is fully accreted; furthermore, if
the two neutron stars have unequal masses, tidal tails are produced which provide
additional late-time accretion [27]. This accretion timescale is close to the typical
observed SGRB durations [50, 38]. It is also long enough for the neutrinos produced
in the torus to escape and annihilate in its neighbourhood; estimates of the associ-
ated energy deposition rate range from ∼ 1048 erg/s [51] to ∼ 1050 erg/s [52], thus
leading to a total energy deposition between a few 1047 erg and a few 1049 erg over a
fraction of a second. This energy would be sufficient to launch a relativistic fireball,
but because radiative losses are accounted yet, the large reservoir of thermal energy
in the torus cannot be extracted in these simulations.

The gravitational wave signal of the whole process is shown in the top part of
the left panel in Fig. 2, while the bottom part exhibits the evolution of the MHD
luminosity, LMHD, as computed from the integrated Poynting flux (solid line) and of
the corresponding energy, EMHD, (dashed line). Clearly, the MHD emission starts
only at the time of merger and increases exponentially after black-hole formation,
when the gravitational wave signal essentially shuts off. Assuming that the quasi-
stationary MHD luminosity is ∼ 4×1048 erg/s, the total MHD energy released dur-
ing the lifetime of the torus is ∼ 1.2× 1048 erg, which, if spread over an opening
half-angle of ∼ 30◦ (see discussion below), suggests a lower limit to the isotropic
equivalent energy in the outflow of ∼ 9× 1048 erg. While this is at the low end of
the observed distribution of gamma-ray energies for SGRBs, larger MHD luminosi-

2 The use of a simplified EOS does not influence particularly the results besides determining the precise time when the
HMNS collapses to a black hole.
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Fig. 1 Snapshots at representative times of the evolution of the binary and of the formation of a large-scale ordered
magnetic field. Shown with a colour-code map is the density, over which the magnetic-field lines are superposed. The
panels in the upper row refer to the binary during the merger (t = 7.4ms) and before the collapse to black hole (t =
13.8ms), while those in the lower row to the evolution after the formation of the black hole (t = 15.26ms, t = 26.5ms).
Green lines sample the magnetic field in the torus and on the equatorial plane, while white lines show the magnetic field
outside the torus and near the black hole spin axis. The inner/outer part of the torus has a size of ∼ 90/170km, while
the horizon has a diameter of ≃ 9km.

ties are expected either through the additional growth of the magnetic field via the
winding of the field lines in the differentially-rotating disk (the simulation covers
only one tenth of taccr), or when magnetic reconnection (which cannot take place
within an ideal-MHD approach), is also accounted for [which may also increase the
gamma-ray efficiency, e.g., [53]].

The last two panels of Fig. 1 offer views of the accreting torus after the black-hole
formation. Although the matter dynamics is quasi-stationary, the last two panels
clearly show that the magnetic-field is not and instead evolves significantly. It is only
when the system is followed well after the formation of a black hole, that MHD in-
stabilities develop and generate the central, low-density, poloidal-field funnel. This
regime, which was not accessible to previous simulations [54, 23, 24], is essential
for the jet formation [55, 56]. Because the strongly magnetised matter in the torus
is highly conductive, it shears the magnetic-field lines via differential rotation. A
measurement of the angular-velocity in the torus indicates that it is essentially Ke-
plerian and thus unstable to the magneto-rotational instability [57], which develops
≃ 5ms after black-hole formation and amplifies exponentially both the poloidal and
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Fig. 2 Left panel: gravitational wave signal shown through the ℓ= 2,m = 2 mode of the + polarization, (h+)22, (top
part) and of the MHD luminosity, LMHD, (bottom part) as computed from the integrated Poynting flux and shown with
a solid line. The corresponding energy, EMHD, is shown with a dashed line. The dotted and dashed vertical lines show
the times of merger (as deduced from the first peak in the evolution of the gravitational wave amplitude) and black-hole
formation, respectively. Right panel: Evolution of the maximum of the magnetic field in its poloidal (red solid line)
and toroidal (blue dashed line) components. The bottom panel shows the maximum local fluid energy indicating that an
unbound outflow (i.e., Eloc > 1) develops and is sustained after black-hole formation.

the toroidal magnetic fields; the e-folding time of the instability is ≃ 2.5ms and in
good agreement with the one expected in the outer parts of the torus [57]. Because
of this exponential growth, the final value of the magnetic field is largely insensitive
to the initial strength and thus a robust feature of the dynamics (see also [58] for a
similar behaviour recently computed in a HMNS)

A quantitative view of the magnetic-field growth is shown in the right panel
of Fig. 2, which shows the evolution of the maximum values in the poloidal and
toroidal components. Note that the latter is negligibly small before the merger,
reaches equipartition with the poloidal field as a result of a Kelvin-Helmholtz insta-
bility triggered by the shearing of the stellar surfaces at merger [54, 59], and finally
grows to ≃ 1015 G by the end of the simulation. At later times (t ≳ 22ms), when
the instability is suppressed, the further growth of the field is due to the shearing of
the field lines and it increases only as a power-law with exponent 3.5 (4.5) for the
poloidal (toroidal) component. Although the magnetic-field growth essentially stalls
after t ≃ 35ms, further slower growths are possible [60], yielding correspondingly
larger Poynting fluxes. Indeed, when the ratio between the magnetic flux across the
horizon and the mass accretion rate becomes sufficiently large, a Blandford-Znajek
mechanism [61] may be ignited [62]; such conditions are not met over the timescale
of the simulations, but could develop over longer timescales. Also shown in the right
panel of Fig. 2 is the maximum local fluid energy, highlighting that an unbound out-
flow (i.e., Eloc > 1) develops after black-hole formation along the outer walls of the
torus and persists for the whole duration of the simulation.

Finally, Fig. 3 provides a summary of the magnetic-field dynamics. It shows the
magnetic field in the HMNS formed after the merger and its structure and dynamics
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Fig. 3 Magnetic-field structure in the HMNS (first panel) and after the collapse to black hole (last three panels).
Green refers to magnetic-field lines inside the torus and on the equatorial plane, while white refers to magnetic-field
lines outside the torus and near the axis. The highly turbulent, predominantly poloidal magnetic-field structure in the
HMNS (t = 13.8ms) changes systematically as the black hole is produced (t = 15.26ms), leading to the formation of a
predominantly toroidal magnetic field in the torus (t = 21.2ms). All panels have the same linear scale, with the horizon’s
diameter being of ≃ 9km.

after the collapse to black hole. In particular, in the last three panels it shows the
magnetic-field structure inside the torus and on the equatorial plane (green), and
outside the torus and near the axis (white). It is apparent that the highly turbulent
magnetic field in the HMNS (t = 13.8ms) changes systematically as the black hole
is produced (t = 15.26ms), leading to the formation of a toroidal magnetic field in
the torus (t = 21.2ms)3. As the MRI sets in, the magnetic field is not only ampli-
fied, but also organises itself into a dual structure, which is mostly toroidal in the
accretion torus with Btor ∼ 2×1015 G, but predominantly poloidal and jet-like along
the black-hole spin axis, with Bpol ∼ 8×1014 G (t = 26.5ms)4. Note that the gener-
ation of an ordered large-scale field is far from trivial and a nonlinear dynamo may
explain why the MRI brings a magnetic field self-organization, as it has been also
suggested in case of MRI-mediated growth of the magnetic field in the conditions

3 Turbulence in relativistic flows is an extremely challenging problem that is also essentially unexplored. Also in this
case, the first relativistic simulations have been performed only recently [63, 64].
4 A similar magnetic-field configuration has been recently reproduced also when simulating the merger of a magnetised
neutron star onto a black hole [65].
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met in the collapse of massive stellar cores [66, 60]. However, the jet-like structure
produced in the simulation is not yet the highly collimated ultrarelativistic outflow
expected in SGRBs (see also below).

The magnetic hollow jet-like structure has an opening half-angle of ∼ 30◦, which
sets an upper limit for the opening half-angle of any potential outflow, either pro-
duced by neutrino energy deposition [55] or by electromagnetic processes [56]. In
these simulations most of the outflow develops along the edges of the jet-like struc-
ture, via a turbulent layer of electromagnetic driven matter, which shields the central
funnel from excessive baryonic pollution. It is reasonable to expect that such a layer
is crucial to set the opening angle of any ultrarelativistic jet, to shape both the radial
and transverse structure of the jet, as well as to determine its stability properties.
The Lorentz factors of the outflow measured in these simulations are not very high
(γ ≲ 4), but can potentially be amplified by several orders of magnitude in the inner
baryon-poor regions through special-relativistic effects [67], the variability of the
flow [68], or when resistive-MHD effects are taken into account [69]. Such acceler-
ations will be produced as a more realistic and general-relativistic treatment of the
radiative losses will become computationally affordable.

2.3 Comparison with observations

Below I briefly discuss how the results presented above broadly match the properties
of the central engine as deduced from the observations.
Duration: The observed duration of the prompt gamma-ray emission GRBs is en-
ergy dependent and is usually determined through Tx, the time over which x% of the
total counts are observed, between the (100−x)/2 and (100+x)/2 percentiles. The
most common intervals used are T90 (or T50), initially defined [50] between 20 keV
and 2 MeV. The GRB duration distribution is bimodal [50], where the durations
of SGRBs (approximately 25% of GRBs) are well-fit by a fairly wide log-normal
distribution centred around T90 ≈ 0.8 s with a FWHM of 1.4 dex [38]. The typical
redshifts of the SGRBs observed with Swift are in the range z ∼ 0.3−1, suggesting
a central value of the intrinsic duration distribution of ≈ ⟨1+ z⟩−10.8 s ∼ 0.5 s, and
a comparably wide distribution around this value. This is in close agreement with
our accretion time of ∼ 0.3 s.
Energy: The isotropic equivalent energy output in the prompt gamma-ray emission
of SGRBs, Eγ,iso, spans a wide range, from (2.7± 1)× 1048 erg (in the observed
energy range 15− 350 keV) for GRB 050509B at a redshift of z = 0.225 [70], up
to (1.08± 0.06)× 1053 erg (in the observed energy range 10 keV – 30 GeV) for
GRB 090510 at z = 0.903 [71]. However, the most typical values are in the range
Eγ,iso ∼ 1049 − 1051 erg [38]. In this model, the highly relativistic outflow may be
powered either by neutrino-anti neutrino annihilation, or by the Blandford-Znajek
mechanism. For the former one might expect a total energy release between a few
1047 erg and ∼ 1049 erg [72, 73], into a bipolar relativistic jet of opening half-angle
θjet ∼ 8−30◦, corresponding to a fraction fb ∼ 0.01−0.13 of the total solid angle,
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and isotropic equivalent energies, Eνν̄ ,iso, between a few 1048 erg and ∼ 1051 erg.
For the latter mechanism, instead, and if the magnetisation near the event horizon
becomes sufficiently high, the jet power for these values for the black-hole mass and
spin is [74]

LBZ ∼ 3.0×1050
(

frel

0.1

)(
B

2×1015 G

)2

erg/s , (1)

where frel is the fraction of the total Blandford-Znajek power that is channelled
into the resulting relativistic jet (and frel ∼ 0.1 might be expected for ejecta with
asymptotic Lorentz factors above 100). This relativistic outflow is launched over a
timescale of ∼ 0.2s and corresponds to

EBZ,iso ∼ 1.2×1051
(

frel

0.1

)(
fb

0.05

)−1( B
2×1015 G

)2

erg , (2)

Comparing the X-ray afterglow luminosity (after 10 or 11 hours) and Eγ,iso suggests
that the efficiency of the prompt gamma-ray emission in SGRBs is typically high
[70], and similar to that of long GRBs [75], with Eγ ,iso ∼ (0.1−0.9)Eiso, radiating
between ∼ 10% and ∼ 90% of the initial energy of the ultrarelativistic outflow.
Therefore, this model is able to accommodate the observed Eγ,iso values.
Lorentz factor: The Fermi Gamma-Ray Space Telescope has detected GeV emission
from SGRBs [76], suggesting typical lower limits of γmin ∼ 102−103. In particular,
γmin ≈ 1200 was obtained for GRB 090510 [71]. However, a more realistic model
[77] results in γmin values lower by a factor of ∼ 3. Therefore, the central engine
should be capable of producing outflow Lorentz factors of at least a few hundred.
The fact that our simulation produces a strongly magnetised mildly relativistic out-
flow at angles near ∼ 30◦ from the black-hole spin axis would help shield the inner
region near the spin axis from excessive baryon loading, and thus assist in achieving
high asymptotic Lorentz factors at large distance from the source, after the outflow
in this region is triggered by neutrinos and/or the Blandford-Znajek mechanism.
Jet angular structure: This is poorly constrained by observations (even more so
than for long GRBs). The only compelling case for a jet break in the afterglow
light-curve is for GRB 090510 [78], which occurred very early on (after ∼ 1400 s),
and would thus imply an extremely narrow jet (θjet ∼ 0.2− 0.4◦) and modest true
energy output in gamma-rays (∼ 1048 erg). If this is indeed a jet break, it might
correspond to a line of sight near a very narrow and bright core of a jet, which
also has significantly wider wings. Observers with lines of sight along these wings
would then see a much dimmer and more typical SGRB [79, 80]; without such
wings, however, the observations would suggest a very large intrinsic and beaming-
corrected event rate per unit volume. In most cases there are only lower limits on
a possible jet break time [38], resulting in typical limits of fb ≳ 10−2 or θjet ≳
8◦. This is consistent with the expectation of θjet ∼ 8− 30◦ for the ultrarelativistic
ejecta capable of producing a SGRB (which would also imply a reasonable SGRBs
intrinsic event rate per unit volume).
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2.4 Summary

The calculations reported above demonstrate that a binary merger of two neutron
stars inevitably leads to the formation of a relativistic jet-like and ultrastrong mag-
netic field, which could serve as a central engine for SGRBs. Because the magnetic-
field growth is exponential, the picture emerging from these simulations is rather
general and applies equally even to mildly magnetised neutron stars. Overall, this
first “little piece” of numerical relativity removes a significant uncertainty as to
whether such binary mergers can indeed produce the central engines of SGRBs.
While the electromagnetic energy release is already broadly compatible with the
observations, the simulations discussed above lack a proper treatment of the energy
losses via photons and neutrinos or resistive dissipation, which can provide a funda-
mental contribution to the energy-input necessary to launch the fireball and cool the
torus [52, 51]. This additional energy input, whose self-consistent inclusion in gen-
eral relativity remains extremely challenging, may help to launch an ultrarelativistic
outflow very early after the black hole forms and complete the picture of the central
engine of a SGRB.

3 Second piece: A dynamical hoop conjecture

The second “little piece” of numerical relativity that I will discuss aims at address-
ing the issue of necessary conditions for the formation of a black hole, which still
represents one of the most intriguing and fascinating predictions of classical gen-
eral relativity. There is abundant astronomical evidence that black holes exist, and a
number of considerations supporting the idea that under suitable conditions gravita-
tional collapse is inevitable [81]. In addition, there is overwhelming numerical ev-
idence that black-hole formation does take place in a variety of environments [42].
Yet, a rigorous definition of the sufficient conditions for black-hole formation is still
lacking. Hence, it is not possible to predict whether the collision of two compact
objects, either stars or elementary particles, will lead to the formation of a black
hole.

The hoop conjecture proposed by Thorne in the ’70s, provides some reasonable
and intuitive guidelines [82]. I recall that the conjecture states that a black hole is
formed if an amount of “mass-energy” E can be compressed to fit within a hoop
with radius equal or smaller than the corresponding Schwarzschild radius, i.e., if
Rhoop ≤ Rs = 2GE/c4, where G is gravitational constant and c the speed of light.
Even though it can be made precise under particular circumstances [83], the hoop
conjecture is not meant to be a precise mathematical statement and, in fact, it is
difficult to predict if the above-mentioned collision will compress matter sufficiently
to fit within the limiting hoop. Loosely speaking, what is difficult is to determine
which part of the “kinetic energy” of the system can be accounted to fit within the
hoop. Since at the collision the conversion of kinetic energy into internal energy is
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a highly nonlinear process, any quantitative prediction becomes rapidly inaccurate
as the speeds involved approach that of light.

As stated above, the hoop conjecture is purely classical. A quantum-mechanical
equivalent is not difficult to formulate, although not very stringent, as it simply
implies that a black hole will be formed at Planck-energy scales. The predicting
power does not improve significantly when considering the conditions of black-hole
formation in higher-dimensional theories of gravity (see, e.g., [84, 85, 86]). In these
frameworks, the energy required for black-hole formation might be significantly
smaller [84], thus providing the possibility of producing them in the Large Hadron
Collider (LHC) [87], but no firm conclusion has been reached yet.

Clearly, although numerical simulations represent a realistic route to shed some
light on this issue (see, e.g., , [88, 89, 90]), even the simplest scenario of the collision
of two compact objects at ultrarelativistic speeds is far from being simple and it is
actually very challenging. A first step was taken by Eardley and Giddings [91],
who have studied the formation of a black hole from the head-on collision of two
plane-fronted gravitational waves with nonzero impact parameter (previous work of
D’Eath and Payne [92, 93, 94] using different methods had considered a zero impact
parameter). In all of these analyses each incoming particle is modelled as a point
particle accompanied by a plane-fronted gravitational shock wave corresponding to
the Lorentz-contracted longitudinal gravitational field of the particle. At the instant
of collision the two shock waves pass through one another and interact through a
nonlinear focusing and shearing. As a result of their investigation, a lower bound
was set on the cross-section for black-hole production, i.e., σ > 32.5(GE/2c4)2,
where E is the centre-of-mass (lab) energy. More recently, and in a framework which
is closer to the one considered here, this problem has been investigated by Choptuik
and Pretorius [95], who studied the collision of two classical spherical solitons, with
a total energy of the system in the lab frame E = 2γbm0c2, where m0 is the “rest-

mass”, γb ≡ 1/
√

1− v2
b/c2 and vb the boost velocity. They were then able to show

that for collisions with sufficiently high boost, i.e., γb ≳ 2.9, a black hole can be
formed.

In what follows I discuss what has been recently reported on the first calcula-
tions of black-hole production from the collision of two compact, selfgravitating,
fluid objects boosted at ultrarelativistic speeds5 (A similar investigation by East and
Pretorius [97] has also appeared at about the same time).

I start by pointing out that there are several important differences with the previ-
ous investigations in [92, 93, 94, 91, 95]. Differently from [92, 93, 94, 91], in fact,
I will consider colliding objects that are not in vacuum and are not treated as point
particles. Rather, they are relativistic stars, which obviously extended and selfgrav-
itating objects, thus with a behaviour that is intrinsically different. Also, differently
from [95], these objects are not described as scalar fields, but as fluids and thus
represent a more realistic description of baryonic matter, such as the one employed
when simulating relativistic heavy-ion collisions [98]. These intrinsic differences
also make the comparison with the works of [92, 93, 94, 91] very hard if possible

5 Much of what follows is taken from the discussion presented in Ref. [96].
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at all. On the other hand, many analogies exist with the collision of bosons stars
considered in [95], and that, as I will discuss below, can be interpreted within the
more general description of black-hole production from ultrarelativistic collisions.

Overall, the most important and distinguishing feature in the collision of two self-
gravitating stars is that a black hole can be produced even from zero initial velocities
if the initial masses are large enough; this behaviour is clearly absent in all previ-
ous results, where instead a critical initial boost is necessary [92, 93, 94, 91, 95].
In addition, for each value of the effective Lorentz factor, ⟨γ⟩, a critical initial mass
exists, Mc, above which a black hole is formed and below which matter, at least
in part, selfgravitates. More importantly, both Mc follows a simple scaling with ⟨γ⟩,
thus allowing to extrapolate the results to the masses and energies of modern particle
accelerators and to deduce that black-hole production is unlikely at LHC scales.

3.1 The numerical setup

The numerical setup employed in the simulations is the same presented in [99], and
it uses an axisymmetric code to solve in two spatial dimensions, (x,z), the set of the
Einstein and of the relativistic-hydrodynamic equations [100]. The axisymmetry of
the spacetime is imposed exploiting the “cartoon” technique, while the hydrody-
namics equations are written explicitly in cylindrical coordinates. All the simula-
tions use an ideal-fluid EOS with Γ = 2. The initial configurations consist of spher-
ical stars, constructed as in [99, 101] after specifying the central density, ρc, where
the latter also serves as parameter to determine the critical model. The stars have
an initial separation D and are boosted along the z-direction via a Lorentz transfor-
mation with boost vb/c. To limit the initial violation in the constraints, D is chosen
to be sufficiently large, i.e., D = 240M⊙, and an optimal superposition of the two
isolated-star solutions that will be presented in a longer paper. The grid has uniform
spacing ∆ = 0.08(0.06)M⊙ with extents x/M⊙ ∈ [0,80] and z/M⊙ ∈ [0,150(200)],
where the round brackets refer to the more demanding high-boost cases. Reflection
boundary conditions are applied on the z = 0 plane, while outgoing conditions are
used elsewhere.

3.2 The basic dynamics

The dynamics of the process is rather simple. As the two stars approach each other,
the initial boost velocity increases as a result of the gravitational attraction, leading
to a strong shock as the surfaces of the stars collide. In the case of supercritical ini-
tial data, i.e., of stars with masses above a critical value, Mc, a black hole is promptly
produced and most of the matter is accreted. Conversely, in the case of subcritical
initial data, i.e., of stars with masses below Mc, the product of the collision is a
hot and extended object with large-amplitude oscillations. Part of the stellar matter
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is unbound and leaves the numerical grid as the product of the collision reaches an
equilibrium.

Fig. 4 Representative snapshots of the rest-mass density, ρ in units where c = 1 = M⊙ (top row), of the Lorentz
factor, γ (middle row), and of the local fluid energy, −u0 (bottom row), for subcritical models with an initial small boost
vb/c = 0.3 (left panel) or a large one vb/c = 0.8 (right panel). Note that the post-collision flow is essentially jet-like for
the low-boost case (left panel), while essentially spherical for the high-boost case (right panel); in this latter case, most
of the matter is unbound.

Figure 4 shows snapshots at representative times of the rest-mass density, ρ (top
row), of the Lorentz factor, γ ≡ (1−vivi/c2)−1/2 (middle row), and of the local fluid
energy, −u0 (bottom row), for two subcritical models. The left panel, in particular,
refers to a binary boosted at vb/c = 0.3. Note that the stars are strongly compressed
by the collision, with the rest-mass density increasing exponentially. The merged
object expands in a jet-like fashion along the z-direction, with the bulk of the mat-
ter being accelerated up to γ ∼ 16, or equivalently, v/c ∼ 0.998, but then settling
on much slower flows with γ ≲ 2.1. Furthermore, the front of the jet has −u0 > 1
indicating that part of the shocked matter has sufficient energy to have become grav-
itationally unbound. As a result, the rest-mass density at the center of the merged
object is smaller than the maximum density of the initial configuration, although the
origin still represents the region where the density is the largest. The right panel, on
the other hand, refers to a highly-boosted binary, i.e., with vb/c = 0.8, with each
star being initially highly distorted by the Lorentz contraction. Also in this case,
the stars are strongly compressed by the collision, but the merged object expands in
a spherical blast-wave fashion, with an almost spherical distribution of matter and
bulk Lorentz factor. The latter reaches values as large as γ ∼ 30, or equivalently,
v/c ∼ 0.999, which, in contrast with the low-boost case, do not decrease in time.
As a comparison, the typical bulk Lorentz factors obtained in the merger of binary
neutron stars in quasi circular orbits is γ ∼ 1.03 [27]. The very large kinetic energies
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involved in the collision are sufficient to make a very large portion of the stellar mat-
ter unbound, as clearly shown by the bottom-right panel of Fig. 4, which reports the
local fluid energy. The rest-mass density distribution in the expanding blast wave
has a minimum at the origin, where a large rarefaction is produced by the matter
expanding as an ultrarelativistic thick shell.

The marked transition from a jet-like outflow, not too dissimilar from the simple
Bjorken flow used to model the very early states of relativistic ion-collisions [102],
to a shell-like structure, not too dissimilar from “transverse expansion” modelled in
the subsequent stages of relativistic ion-collisions (see [103] and references therein),
signals that it is not unreasonable to extrapolate some of the results presented here
also to the collision of ultrarelativistic elementary particles.

The transition from the two qualitatively-different regimes discussed above is
further confirmed by the evolution of the rest-mass normalized to the initial value
M0. The simulations in fact reveal that the unbound fraction is just a few percent
of the total rest-mass in the case of a low-boost collision, with most of the matter
being confined in the selfgravitating “star”. This is to be contrasted with what hap-
pens for a high-boost collision, where the unbound fraction is ∼ 100% of the total
rest-mass. This behaviour provides a strong indication that, at least for subcritical
collisions, the role played by gravitational forces is a minor one as the kinetic energy
is increased. This is what happens in the collision of two particles at ultrarelativistic
speeds, where all of the matter is obviously unbound.

3.3 Critical behaviour and scaling

A remarkable property of the head-on collision of compact stars is the existence
of type-I critical behaviour, which was first pointed out in [104] and subsequently
extended in [100]. In essence, in these works it was found that when considering
stars with initial zero velocity at infinity, it is possible to fine-tune the initial central
density ρc (and hence the mass) near a critical value, ρ⋆

c , so that stars with ρc > ρ⋆
c

would collapse eventually to a black hole, while the models with ρc < ρ⋆
c would

eventually lead to a stable stellar configuration. As a result, the head-on collision
of two neutron stars near the critical threshold can be seen as a transition in the
space of configurations from an initial stable solution over to a critical metastable
one which can either migrate to a stable solution or collapse to a black hole [101].
As the critical limit is approached, the survival time of the metastable object, τeq,
increases as τeq =−λ ln |ρc −ρ⋆

c |, with λ ∼ 10 [104, 100].
Although the free-fall velocities considered in [104, 100] were very small, the

critical behaviour continues to hold also when the stars are boosted to ultrarelativis-
tic velocities. Interestingly, the threshold ρ⋆

c becomes now a function of the initial
effective boost. Determining ρ⋆

c becomes especially challenging as the Lorentz fac-
tor is increased and the dynamics of the matter becomes extremely violent, with
very strong shocks and rarefaction waves. However, it was possible to determine
the threshold for all the range of initial boosts considered, i.e., vb/c ∈ [0, 0.95],
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γb ∈ [1, 3.2], and even to a reasonable accuracy, e.g., ρ⋆
c = (3.288023±0.000003)×

1014 g/cm3, for the initial boost of vb/c = 0.3.
The existence of critical behaviour near which the details of the initial conditions

become irrelevant and which is the same at different boosts, i.e., λ does not depend
on γ nor on ρc (Refs. [104, 105] have shown there is “universality” when varying
γ and fixing ρc), gives us a wonderful tool to explore the conditions of black-hole
formation also far away from the masses and Lorentz factors considered in this
paper. This is illustrated in Fig. 5, which reports the gravitational mass of the isolated
spherical star as a function of the effective initial Lorentz factor

⟨γ⟩ ≡
∫

dV Tµν nµ nν

(
∫

dV Tµν nµ nν)0
, (3)

where Tµν is the stress-energy tensor, nµ is the unit normal to the spatial hyperspace
with proper volume element dV , and the index 0 refers to quantities measured in the
initial unboosted frame. I should stress that the definition of the effective Lorentz
factor (3) is necessary because the stars are extended and thus the Lorentz factor
will be different in different parts of the star. Expression (3), on the other hand, can
be taken as ratio of the energies measured in the boosted and unboosted frames,
and hence a generalisation of the Lorentz factor for a point particle (Indeed ⟨γ⟩→ 1
for vb → 1). Of course, other parametrizations are possible, still leading to scaling
laws, but with slightly different exponents. Filled circles indicate initial data leading
to a black hole, while triangles indicate initial data leading to a “star”, whereby I
mean an object which is at least in part selfgravitating (orange errorbars provide an
approximate upper limit of ∼ 8% to the error in the measurements). Also indicated
as a blue solid line is the critical line separating the two regions of black hole and
star formation (the latter is shown as a shaded region). Clearly, the numerical results
provide a tight fit of the critical line with a power law

Mc

M⊙
= K

1
⟨γ⟩n ≈ 0.92

1
⟨γ⟩1.03 . (4)

Expression (4) offers itself to a number of considerations. First, it essentially
expresses the conservation of energy. Second, in the limit of zero initial velocities,
⟨γ⟩ → 1, one obtains that Mc ≃ 0.92M⊙, so that the corresponding total mass, 2Mc,
is only ∼ 12% larger than the maximum mass of the relative spherical-star sequence,
i.e., Mmax = 1.637M⊙. Third, in the opposite limit of ⟨γ⟩ → ∞, expression (4)
predicts that the critical mass will go zero. This is indeed what one would expect: as
the kinetic energy diverges, no room is left for selfgravitating matter, which will all
be ejected but for an infinitesimal amount which will go into building the zero-mass
critical black hole. Fourthly, (4) is also in agreement with the results in [95, 97],
whereby one can recognize the black-hole formation as the crossing of the critical
line when moving to larger Lorentz factors while keeping the rest-mass constant.

Finally, using (4) it is possible to probe whether the kinetic energies achieved by
modern particle accelerators, such as the LHC, are sufficient to produce micro black
holes from the collision of two ultrarelativistic particles. Using the results reported
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Fig. 5 Critical line as a function of the average Lorentz factor, with circles indicating black holes and triangles self-
gravitating objects. The inset shows the regimes explored at LHC and measured in UHECR.

in Ref. [106], the expected energies achieved by LHC in the next couple of years will
be 4−7TeV, so that a proton, whose mass is ∼ 938 MeV ∼ 8.41×10−58 M⊙, can
be accelerated up to γ ∼ 7.5×103. I have therefore reported the range of masses and
Lorentz factors accessible to LHC in the inset in Fig. 5, where it appears as a small
magenta box. Note that the calculations reported here do not intend to be a realistic
approximation of the dynamics of ultrarelativistic particle collisions. However, these
calculations and the presence of a critical behaviour can be used to deduce that the
ranges reachable at the LHC are well below the critical line and thus in the region
where a partially-confined collided object is expected.

Of course, this line of arguments wildly extrapolates our results by almost 60
orders of magnitude in mass (11 in Lorentz factor) and neglects quantum effects and
extra-dimension effects that might be important at Planck-energy scales. Bearing
in mind these caveats, our calculations suggest that the production of micro black
holes at LHC will be unlikely. An additional confirmation that our estimates are
not unreasonable comes from considering the corresponding energy and Lorentz
factors for the observed ultra-high energy cosmic rays (UHECR), that are observed
with energies up to ∼ 1020 eV (i.e., γ ∼ 1011) and for which there is no evidence
of black-hole formation when interacting with the atmosphere [107]. Also in this
case, the relevant range of masses and Lorentz factors is shown in the inset and falls
in the region where no black holes should be produced.
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As a final remark I note that the scaling relation (4) can be expressed equivalently
in terms of the original stellar compactness, M/R as(

M
R

)
c
= K′ 1

⟨γ⟩n′ ≈ 0.08
1

⟨γ⟩1.13 . (5)

Since Mlab ≡ ⟨γ⟩M is the mass in the lab frame, and since R is the largest dimension
in that frame being the transverse one to the motion, the ratio(

Mlab

R

)
c
= K′ 1

⟨γ⟩n′−1 ∼ K′ 1
⟨γ⟩0.13 , (6)

provides the condition for the amount of energy that, when confined in a hoop of
radius R, would lead to a black hole. Hence, expression (6) extends the spirit of
the hoop conjecture to the case in which a kinetic energy is present. Note that the
limiting value ⟨γ⟩= 1 does not corresponds to a static configuration (as in the hoop
conjecture) but to a binary that is at rest at infinity. This explains why in this limit
(Mlab/R)c = (M/R)c ≃ 0.08, which is considerably smaller than the value 1/2 pre-
dicted by the hoop conjecture.

3.4 Summary

The calculations reported above demonstrate that it is possible to find a criterion for
the conditions leading to black-hole formation in the collision of two selfgravitating
fluids moving at ultrarelativistic velocities. The Lorentz factors reached in these
simulations are considerably larger than those encountered in merging neutron-star
binaries, especially if the inspiral is along quasi-circular orbits. The properties of
the flow after the collision change with Lorentz factor, with most of the matter being
ejected in a spherical blast wave for large boosts. Interestingly, the collided object
exhibits a critical behaviour of type I, which is found to persist also as the initial
boost is increased. This allows one to derive a simple scaling law and extrapolate
these results to the energies of elementary particles at LHC and conclude that black-
hole production is unlikely in that case.

4 Third piece: horizons as probes of black-hole dynamics

The third and last “little piece” of numerical relativity that I will discuss is instead
about calculations in vacuum spacetimes and focuses on the merger of two black
holes. This process, which represents one of the most important source of gravita-
tional waves, is generally accompanied by the recoil of the final black hole as a result
of anisotropic gravitational wave emission. While this scenario has been investi-
gated for decades [108] and first estimates have been made using approximated and
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semi-analytical methods such as a particle approximation [109], post-Newtonian
methods [110] and the close-limit approximation (CLA) [111], it is only thanks to
the recent progress in numerical relativity that accurate values for the recoil velocity
have been computed [112, 113, 114, 115, 116, 117, 118, 119, 120].

Besides being a genuine nonlinear effect of general relativity, the generation of
a large recoil velocity during the merger of two black holes has a direct impact in
astrophysics. Depending on its size and its variation with the mass ratio and spin,
in fact, it can play an important role in the growth of supermassive black holes
via mergers of galaxies and on the number of galaxies containing black holes.
Numerical-relativity simulations of black holes inspiralling on quasi-circular or-
bits have already revealed many of the most important features of this process
showing, for instance, that asymmetries in the mass can lead to recoil velocities
vk ≲ 175km/s [112, 113], while asymmetries in the spins can lead respectively to
vk ≲ 450km/s or vk ≲ 4000km/s if the spins are aligned [115, 116, 118] or perpen-
dicular to the orbital angular momentum [121, 122, 114] (see [123] for a review and
[124] for the most recent results).

At the same time, however, there are a number of aspects of the nonlinear pro-
cesses leading to the recoil that are far from being clarified even though interesting
work has been recently carried out to investigate such aspects [125, 126, 127]. One
of these features, and possibly the most puzzling one, is the generic presence of
an “anti-kick”, namely, of one (or more) decelerations experienced by the recoiling
black hole. Such anti-kicks take place after a single apparent horizon has been found
and have been reported in essentially all of the mergers simulated so far (see Fig. 8
of Ref. [118] for some examples).

What follows discusses a phenomenological framework which provides a novel
description of the stages during which the anti-kick is generated, and that can be
used to formulate a simple and qualitative interpretation of the physics underlying
this process. I will focus on the head-on collision of two nonspinning black holes
with different mass. Although this is the simplest scenario for a black-hole merger,
it contains all the important aspects that can be encountered in more generic condi-
tions6.

4.1 The basic picture

I will start by presenting a qualitative interpretation of the antikick by considering
the simple head-on collision of two Schwarzschild black holes with unequal masses.
This qualitative picture will be made quantitative and gauge-invariant by studying
the logical equivalent of this process in the evolution of a Robinson-Trautman space-
time, with measurements of the recoil made at future null infinity. The insight gained
with this spacetime will be valuable to explain the anti-kick under generic conditions
and to contribute to the understanding of nonlinear black-hole physics.

6 Much of what follows is taken from the discussion presented in Refs. [128, 129, 130].
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Figure 6 illustrates the dynamics of the head-on collision using a schematic car-
toon where I am considering a coordinate system centred in the total centre of mass
of the system and where the smaller black hole is initially on the positive z-axis,
while the larger one is on the negative axis. As the two black holes free-fall towards
each other, the smaller one will move faster and will be more efficient in “forward-
beaming” its gravitational wave emission [110]. As a result, the linear momentum
will be radiated mostly downwards, thus leading to an upwards recoil of the black
hole binary [cf., stage (1) in Fig. 6]. At the merger, the black-hole velocities will
be the largest and so will also be the anisotropic gravitational wave emission and
the corresponding recoil of the system. However, when a single apparent horizon is
formed comprising the two black holes, the curvature distribution on this 2-surface
will be highly anisotropic, being higher in the upper hemisphere (cf., red-blue shad-
ing in stage (2) of Fig. 6). Because the newly formed black hole will want to radiate
all of its deviations away from the final Schwarzschild configuration, it will do so
more effectively there where the curvature is larger, thus with a stronger emission
of gravitational waves from the northern hemisphere. As a result, after the merger
the linear momentum will be emitted mostly upwards and this sudden change in
sign will lead to the anti-kick. The anisotropic gravitational wave emission will de-
cay exponentially as the curvature gradients are erased and the quiescent black hole
reaches its final and decelerated recoil velocity [cf., stage (3)]7.
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Fig. 6 Cartoon of the generation of the anti-kick in the head-on collision of two unequal-mass Schwarzschild black
holes. Initially the smaller black hole moves faster and linear momentum is radiated mostly downwards, thus leading
to an upwards recoil of the system [stage (1)]. At the merger the curvature is higher in the upper hemisphere of the
distorted black hole (cf., red-blue shading) and linear momentum is radiated mostly upwards leading to the anti-kick
[stage (2)]. The black hole decelerates till a uniform curvature is restored on the horizon [stage (3)].

7 I should remark that other explanations have also been suggested. One of them makes use of the Landau-Lifshitz
pseudotensor and explains the recoil in terms of the cancellation of large and opposite fluxes of momentum, part of
which are “swallowed” by the black hole [131]. Another one is even more essential and explains the antikick is in terms
of the spectral features of the signal at large distances, quite independently of the presence of a black-hole horizon [132].
All of these views serve the scope of providing an intuitive description and are in my view equally valid and useful.
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Although this picture refers to a head-on collision, it is supported by the findings
in the CLA (where the direction of the ringdown kick is approximately opposite to
that of the accumulated inspiral plus plunge kick) [127] and it can be generalized
to a situation in which the black holes have different masses, different spins and
are merging through an inspiral. Also in a more generic case, the newly-formed
apparent horizon will have a complicated but globally anisotropic distribution of
the curvature, determining the direction (which is in general varying in time) along
which the gravitational waves will be emitted. Hence, the geometric properties in a
dynamical horizon (of a black or white hole) determine its global dynamics. I next
use the Robinson-Trautman spacetime to validate this picture.

4.2 A useful playground

The Robinson-Trautman spacetime represents a class of vacuum solutions admitting
a congruence of null geodesics which are twist and shear-free [133], with a future
stationary horizon and a dynamical past (outer trapping) horizon [134, 135, 136,
137, 138] (past apparent horizon hereafter). A Robinson-Trautman spacetime is thus
regarded as an isolated nonspherical white hole emitting gravitational waves, where
the evolution of the apparent horizon curvature-anisotropies and the total spacetime
momentum dynamics can be related unambiguously. The metric is given by [139]

ds2 =−
(

K − 2M∞

r
− 2r∂uQ

Q

)
du2 −2dudr+

r2

Q2 dΩ 2 , (7)

where Q = Q(u,Ω), u is the standard null coordinate, r is the affine parameter of
the outgoing null geodesics, and Ω = {θ ,ϕ} are the angular coordinates on the unit
sphere S2. Here M∞ is a constant and is related to the asymptotic mass, while the
function K(u,Ω) is the Gaussian curvature of the surface corresponding to r = 1
and u = constant, K(u,Ω) ≡ Q2(1+∇2

Ω lnQ), where ∇2
Ω is the Laplacian on S2.

The Einstein equations then lead to the evolution equation

∂uQ(u,Ω) =−Q3∇2
Ω K(u,Ω)/(12M∞) . (8)

Any regular initial data Q = Q(0,Ω) will smoothly evolve according to (8) until
it achieves a stationary configuration corresponding to a Schwarzschild black hole
at rest or moving with a constant speed [140]. Equation (8) implies the existence
of the constant of motion A ≡

∫
S2 dΩ/Q2, which clearly represents the area of the

surface u = const., r = const. and can be used to normalise Q so that A = 4π . All
the physically relevant information is contained in the function Q(u,Ω), and this
includes the gravitational radiation, which can be extracted by relating Q(u,Ω) to
the radiative part of the Riemann tensor [141, 142].

The past apparent horizon radius R(u,Ω) is given by the vanishing expansion of
the future ingoing null geodesics, satisfying [134, 135]
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Q2∇2
Ω lnR = K −2M∞/R . (9)

The mass and momentum of the black hole are computed at future null infinity
using the Bondi four-momentum [139]

Pα(u)≡ M∞

4π

∫
S2

ηα

Q3 dΩ , (10)

with (ηα) = (1,sinθ cosϕ ,sinθ sinϕ ,cosθ). Given smooth initial data, the space-
time will evolve to a stationary non-radiative solution which, in axisymmetry,
has the form Q(∞,θ) = (1∓ vx)/

√
1− v2, with x ≡ cosθ [139]. The Bondi four-

momentum associated to Q(∞,θ) has components

(P(∞))α =
(

M∞/
√

1− v2
)
(1,0,0,±v) , (11)

so that the parameter v in Q(∞,θ) can be interpreted as the velocity of the Schwarz-
schild black hole in the z-direction.

One of the difficulties with Robinson-Trautman spacetimes is the definition of
physically meaningful initial data. Although this is meant more as a proof-of-
principle than a realistic configuration, it is possible to adopt the prescription sug-
gested in Ref. [142]

Q(0,θ) = Q0

[
1√

1−wx
+

q√
1+wx

]−2

, (12)

and which was interpreted to represent the final stages (i.e., after a common appar-
ent horizon is formed) of a head-on collision of two boosted black holes with oppo-
site velocities w and mass ratio q [142]. In practice, to reproduce the situation shown
in Fig. 6, it is sufficient to choose w < 0 and take q ∈ [0,1]; a more general class of
initial data and the corresponding phenomenology can be found in [129, 143]. Note
that Q0 is chosen so that to A = 4π and that in general the deformed black hole
will not be initially at rest. As a result, given the initial velocity v0 ≡ P3(0)/P0(0), a
boost is performed transformation Pα

= Λ α
β (v0)Pβ so that P3

(0) = 0 by construc-
tion. The numerical solution of eq. (8) with initial data (12) is performed using a
Galerkin decomposition as discussed in detail in [139].

Figure 7 reports the typical evolution of a Robinson-Trautman spacetime with
the lower panel showing the evolution of the curvature of the past apparent horizon
KAH ≡ 2M∞/R3(x) at the north (x = 1) and south pole (x =−1), and with the upper
panel showing the evolution of the recoil velocity. Note that the two local curva-
tures are different initially, with the one in the upper hemisphere being larger than
the one in the lower hemisphere (cf., Fig. 6). However, as the gravitational radiation
is emitted, this difference is erased. When this happens, the deceleration stops and
the black hole attains its asymptotic recoil velocity. The inset reports the curvature
difference relative to the asymptotic Schwarzschild one, KAH − 1, whose exponen-
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Fig. 7 Typical evolution of a Robinson-Trautman spacetime. Shown in the lower panel is the evolution of the curvature
KAH at the north (x = 1) and south pole (x =−1). Shown in the upper panel is the evolution of the recoil, which stops
decreasing when the curvature difference is erased by the emitted radiation (dotted line). Note that the curvature decays
exponentially to that of a Schwarzschild black hole (inset).

tially decaying behaviour is the one expected in a ringing black hole (see also Fig.
7 of Ref. [129]).

As mentioned before, the one shown in Fig. 7 is a typical evolution of a
Robinson-Trautman spacetime and is not specific of the initial data (12). By varying
the values of w, in fact, it is possible to increase or decreases the final recoil and a
sign change in w simply inverts the curvature at the poles so that, for instance, ini-
tial data with w > 0 would yield a black hole accelerating in the positive z-direction.
Interestingly, it is even possible to fine-tune the parameter w so that the recoil pro-
duced for a Robinson-Trautman spacetime mimics the anti-kick produced by the
quasi-circular inspiral of nonspinning binaries. This is shown in Fig. 1, which re-
ports the recoil as a function of the symmetric mass ratio ν ≡ q/(1+q)2, and where
the dashed line refers to the anti-kick for the inspiral of nonspinning binaries in the
CLA [127] (the parameters chosen, i.e., w =−0.425 and r12 = 2M, are those min-
imising the differences). Considering that the two curves are related only logically
and that the CLA one contains all the information about inspiralling black holes,
including the orbital rotation, the match is surprisingly good.

It is also suggestive to think that the curve in Fig. 8 is actually composed of two
different branches, one of which is characterized by large curvature gradients across
the apparent horizon but small values of the curvature (this is the low-ν branch
and is indicated with squares), while the other is characterized by small curvature
gradients and large values of the curvature (this is the high-ν branch and is indicated



Three little pieces for computer and relativity 23

Fig. 8 Recoil velocity shown as a function of the symmetric mass ratio ν when w = −0.425, with the dashed line
refers to the anti-kick from the inspiral of nonspinning binaries in the CLA [127]. Note that the curve can be thought as
composed of two different branches.

with circles). The same recoil velocity can then be produced by two different values
of ν , for which the effects of large curvature gradients and small local curvatures are
the same as those produced by small curvature gradients but large local curvatures.

To go from this intuition to a mathematically well-defined measure one can com-
pute the mass multipoles of the intrinsic curvature of the initial data using the for-
malism developed in [144] for dynamical horizons. Namely, it is possible to com-
pute the mass moments as (the mass-current are obviously zero)

Mn ≡
∮ Pn(x̃)

Q2(θ)R(θ)
dΩ , (13)

where Pn(x̃) is the Legendre polynomial in terms of the coordinate x̃(θ) which obeys
∂θ x̃ = −sinθR(θ)2/(R2

AH
Q(θ)2), with RAH ≡

√
AAH/(4π) and x̃(0) = 1. Using

these multipoles it is possible to construct an effective-curvature parameter Keff that
represents a measure of the global curvature properties of the initial data and from
which the recoil depends in an injective way. Because this effective-curvature pa-
rameter has to contain the contribution from the even and odd multipoles, the ex-
pression

Keff = M2| ∑
n=1

M2n+1/3n−1| , (14)

was found to reproduce exactly what expected (note M1 = 0 to machine precision).
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This is shown in Fig. 9, which reports the recoil velocity as a function of Keff.
As predicted, and in contrast with Fig. 8, the relation between the curvature and
the recoil is now injective, with the maximum recoil velocity being given by the
maximum value of Keff (see inset), and with the two branches coinciding. The ex-
pression (14) suggested above for Keff is not unique and indeed a more generic one
will have to include also the mass-current multipoles to account for the spin contri-
butions (see discussion below). However, lacking a rigorous mathematical guidance,
the phenomenological Keff is a reasonable, intuitive approximation.

Fig. 9 Recoil velocity shown as a function of the effective curvature. In contrast with Fig. 8, which uses the same
symbols employed here, the relation between the curvature and the recoil is now injective.

4.3 A more general view

Despite the valuable insight, the treatment summarised above and presented in
Ref. [128] had obvious limitations. First, the Ansatz (14) for Keff, i.e., Keff =
feven (M2ℓ)× fodd (M2ℓ+1) is not straightforwardly generalize to the non-axisymmetric
case. Second, the functions feven and fodd can be written in the simplest possi-
ble form, i.e., as a linear expansion in Mℓ’s, i.e., Keff = (a2M2 +a4M4 + . . .)×
(a3M3 +a5M5 + . . .), where the phenomenological coefficients aℓ’s depend on the
details of the employed initial data. Finally, the white-hole horizon analysis in
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Robinson-Trautman spacetimes needs to be extended to the genuine black-hole hori-
zon case.

While the focus in what discussed above (and presented in Ref. [128]) was on
expressing the difference between the final kick velocity v∞ and the instantaneous
kick velocity vk(u) at an (initial) given time u, in terms of the geometry of the
common apparent horizon at that time u, it is possible to derive a more generic
view based on geometric quantities that are evaluated at a given time during the
evolution. More specifically, it is possible to consider the variation of the Bondi
linear momentum vector in time (dPB

i /du)(u) as the relevant geometric quantity to
monitor at null infinity J +. This quantity can then be correlated with a counterpart
on the black-hole horizon H +, e.g., a vector K̃i

eff(v) (function of an advanced
time v), which represents an extension of the effective curvature introduced in the
previous Section8.

In the case of a Robinson-Trautman spacetime, the causal relation between the
white-hole horizon H − and null infinity J + made possible to establish an explicit
functional relation between dvk/du and K′

eff(u). In the case of a generic black-hole
horizon, such a direct causal relation between the inner horizon and J + is lost.
However, since the corresponding causal pasts of J + and H − coincide in part,
non-trivial correlations are still possible and expected. These correlations can be
measured by comparing geometric quantities hinn(v) at H + and hout(u) at J +,
both considered here as two timeseries9. In particular, it is reasonable to take K̃i

eff(v)
as hinn(v) and (dPB

i /du)(u) as hout(u).
This approach resembles therefore the methodology adopted in scattering ex-

periments. Gravitational dynamics in a given spacetime region affects the geometry
of appropriately-chosen outer and inner hypersurfaces of the black-hole spacetime.
These hypersurfaces are then understood as test screens on which suitable geomet-
ric quantities must be constructed. The correlations between the two encode ge-
ometric information about the dynamics in the bulk, providing information useful
for an inverse-scattering approach to the near-horizon dynamics. In asymptotically
flat black-hole spacetimes, null infinity J + and the (event) black-hole horizon
H + provide natural choices for the outer and inner screens. This is summarised
in the Carter-Penrose diagram in Fig. 10, which illustrates the cross-correlation ap-
proach to near-horizon gravitational dynamics. The event horizon H + and null
infinity J + provide spacetime screens on which geometric quantities, account-
ing respectively for horizon deformations and wave emission, are measured. Their
cross-correlation encodes information about the bulk spacetime dynamics.

The picture offered by Fig. 10 can be easily adapted to the 3+1 approach com-
monly adopted in numerical relativity. Since neither the black-hole event horizon
nor null infinity are in general available during the evolution10, it is possible to
adopt as inner and outer screens a dynamical horizon H + (future outer trapping

8 Another appealing approach that has a similar goal of correlating strong-fields effects with (the visualization of)
spacetime curvature has been proposed recently by the group in Caltech [145, 146].
9 Note that the meaningful definition of timeseries cross-correlations requires the introduction of a (gauge-dependent)
relation between advanced and retarded time coordinates v and u. In an initial value problem this is naturally provided
by the 3+1 spacetime slicing by time t.
10 The latter would properly require either characteristic or a hyperboloidal evolution approach.
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Fig. 10 Carter-Penrose diagram illustrating the scattering approach to near-horizon gravitational dynamics in a
generic spherically symmetric collapse. The event horizon H + and null infinity J + provide spacetime canonical
screens on which geometric quantities, respectively accounting for horizon deformations and wave emission, are de-
fined. Their cross-correlation encodes nontrivially information about the bulk spacetime dynamics.

horizon [147, 148, 149]) and a timelike tube B at large spatial distances, respec-
tively. In this case, the time function t associated with the 3+1 spacetime slicing
provides a (gauge) mapping between the retarded and advanced times u and v, so
that cross-correlations between geometric quantities at H + and B can be calcu-
lated as standard timeseries hinn(t) and hout(t). This is summarised in the Carter-
Penrose diagram in Fig. 11, which is the same as in Fig. 10, but where the 3+1
slicing sets an in-built common time t for cross-correlations between the dynamical
horizon H + (i.e., the inner screen) and a large-distance timelike hypersurface B
(i.e., the outer screen).

Within this conceptual framework it is then possible to define a phenomeno-
logical curvature vector K̃eff

i (t) in terms of the mass multipoles of the Ricci scalar
curvature 2R at H + and show that this is closely correlated with a geometric quan-
tities (dPB

i /dt)(t), representing the variation of the Bondi linear momentum time
on J +. How to do this in practice for a black-hole spacetime requires much more
space that I can take in this contribution and therefore refer the interested reader to
Refs. [129, 130], where this is discussed in great detail.
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Fig. 11 Carter-Penrose diagram for the scattering picture in a Cauchy initial value approach. The dynamical horizon
H + and a large-distance timelike hypersurface B provide inner and outer screens. Note that the dynamical horizon is
split in two portions: outer and inner (solid and dashed blue lines, respectively) and that the 3+1 slicing sets a common
time t for cross-correlations.

4.4 Summary

The discussion reported above demonstrates that qualitative aspects of the post-
merger recoil dynamics at infinity can be understood in terms of the evolution of the
geometry of the common horizon of the resulting black hole. Moreover, suitably-
built quantities defined on inner and outer worldtubes (represented either by dy-
namical horizons or by timelike boundaries) can act as test screens responding to
the spacetime geometry in the bulk, thus opening the way to a cross-correlation ap-
proach to probe the dynamics of spacetime. This picture was shown to hold both
for a simple Robinson-Trautman spacetime, but also for more generic binary black-
hole spacetimes. In this latter case, this is possible through the construction of a
phenomenological vector K̃eff

i (t) from the Ricci curvature scalar 2R on the dynami-
cal horizon sections, which then captures the global properties of the flux of Bondi
linear momentum (dPB

i /dt)(t) at infinity, namely the acceleration of the BH.
A geometric framework looking at the horizon’s properties offers a number of

connections with the literature developing around the use of horizons to study the
dynamics of black holes, as well as with the interpretations of such dynamics in
terms of a viscous-hydrodynamics analogy. Much of the machinery developed using
dynamical trapping horizons as inner screens can be extended also when a common
horizon is not formed (as in the calculations reported in Ref. [150]). While in such
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cases the identification of an appropriate hypersurface for the inner screen can be
more difficult, once this is found its geometrical properties can be used along the
lines of the cross-correlation approach discussed here for dynamical horizons.

5 Conclusions

The “three little piece” for numerical computer and relativity presented in the sec-
tions above ought to provide a reasonable idea of the “Renaissance” that numerical
relativity is now experiencing. More importantly, they should be able to convey the
enormous potential that numerical-relativity simulations have in revealing aspects
of the theory that cannot be handled analytically, or in exploring nonlinear regimes
that cannot be investigated through perturbative approaches. As remarked repeat-
edly, the examples brought represent only a personal (and biased) selection of the
intense work carried out recently and surely are not exhaustive in terms of the phys-
ical scenarios that can be explored. Much more can be said about this and surely it
will not have to wait for the bicentenary of Einstein’s stay in Prague.
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