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Abstract We describe recent progress with a formulation of the Einstein equations
on constant mean curvature surfaces extending to future null infinity. Long-time
stable numerical evolutions of an axisymmetric gravitationally perturbed Schwarz-
schild black hole have been obtained. Here we show how matter can be included
in our formulation. We study late-time tails for the spherically symmetric Einstein-
Yang-Mills equations both for initial data that disperse and that collapse to a black
hole.

1 Introduction

The standard approach to numerical simulations of asymptotically flat spacetimes
is to adopt the Cauchy formulation of general relativity and truncate the spatial
slices at a finite distance, where boundary conditions must be imposed. Apart from
leading to a well-posed initial-boundary value problem, such boundary conditions
should also be absorbing, i.e. they should be consistent with the solution on the
unbounded domain. The problem is that the correct boundary conditions are not
known at a finite distance. At best one may appeal to linearised theory. Bad choices
of boundary conditions are known to destroy relevant features of the solution. A far
more elegant approach is to include future null infinity in the numerical domain,
which is the true physical boundary of spacetime. In order to do this, we follow
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Penrose’s approach and apply a conformal transformation to the spacetime metric,
combined with a compactifying coordinate transformation. Rather than Friedrich’s
regular conformal field equations [1], we work directly with the Einstein equations
in an ADM-like formulation on constant mean curvature (CMC) slices [2]. This
formulation is reviewed in section 2 and extended here to include matter sources. In
section 3 we review a first numerical implementation of this system, which achieved
long-time stable evolution of a perturbed Schwarzschild black hole for the vacuum
Einstein equations in axisymmetry. In section 4 we include matter in the form of a
Yang-Mills field, and we perform numerical simulations of the late-time decay of
this field, restricted to spherical symmetry. Our evolutions include cases that form a
black hole from regular initial data.

2 General formulation

We decompose the spacetime metric (4)gµν in ADM form,

(4)g =−N2dt2 +gi j(dxi +X idt)(dx j +X jdt), (1)

where gi j is the induced metric on the t = const slices, N is the lapse function and X
the shift vector. The conformal spacetime metric (4)g̃µν = Ω 2(4)gµν is decomposed
in a similar way,

(4)g̃ =−Ñ2dt2 + γi j(dxi +X idt)(dx j +X jdt), (2)

where we identify γi j = Ω 2gi j and Ñ = ΩN. The unit timelike normals of the phys-
ical and conformal spacetimes are related via nµ = Ω ñµ . The extrinsic curvature of
the slices is defined as

Ki j =− 1
2Lngi j, (3)

where L denotes the Lie derivative. We require constant mean curvature,

gi jKi j ≡−K = const, (4)

with K > 0 so that the slices approach future null infinity I +. Our fundamental
evolution variable is the traceless part of the ADM momentum

π tr i j =−µg(gikg jl − 1
3 gi jgkl)Kkl , (5)

where µg =
√

det(gi j).
Before continuing, we show how matter can be included in our formalism. We

restrict ourselves to tracefree energy-momentum tensors, gµν Tµν = 0. Examples of
matter models satisfying this condition include Maxwell and Yang-Mills fields and
the conformally coupled scalar field. The tracefree condition insures that the matter
evolution equations are conformally invariant (and hence are regular at I +), in
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particular,
(4)g̃µν (4)∇̃µ T̃νρ = Ω−4 (4)gµν (4)∇µ Tνρ = 0, (6)

where we have introduced a conformally rescaled energy-momentum tensor T̃µν ≡
Ω−2Tµν . For this conformal energy-momentum tensor we introduce the usual pro-
jections

ρ̃ ≡ ñµ ñν T̃µν , J̃i ≡−γ iµ ñν T̃µν , S̃i j ≡ γi
µ γ j

ν T̃µν , S̃ ≡ γ i jS̃i j. (7)

We are now ready to write down the ADM equations. Let ∇̃ denote the Levi-
Civita connection of γ , R̃i j its Ricci tensor and R̃ the Ricci scalar. The (not generally
constant) mean curvature of the slices in the conformal spacetime is denoted by K̃.
The evolution equations are

Lñγi j = 2µ−1
γ γikγ jlπ trkl − 2

3 γi jK̃, (8)

Lñπ tr i j = −2µ−1
γ γklπ tr ikπ tr jl − 2

3 Ω−1Kπ tr i j

+µγ
[
Ñ−1∇̃i∇̃ jÑ − R̃i j −2Ω−1∇̃i∇̃ jΩ +κΩ 2S̃i j]tr

. (9)

The Hamiltonian and momentum constraints read

0 = −4Ω∇̃i∇̃iΩ +6γ i jΩ,iΩ, j −Ω 2R̃− 2
3 K2

+Ω 2µ−2
γ γikγ jlπ tr i jπ trkl +2κΩ 4ρ̃, (10)

0 = ∇̃ j(Ω−2π tr i j)+κµγ J̃i. (11)

We also have an elliptic equation for the lapse arising from the constant mean cur-
vature condition (4),

0 = −Ω 2∇̃i∇̃iÑ +3Ωγ i jÑ,iΩ, j − 3
2 Ñγ i jΩ,iΩ, j +

1
6 ÑK2

− 1
4 ÑΩ 2R̃+ 5

4 ÑΩ 2µ−2
γ γikγ jlπ tr i jπ trkl + 1

2 κÑΩ 4(S̃+2ρ̃). (12)

In [2] we fixed the spatial coordinates by imposing a (spatial) harmonic gauge
condition. However, other choices are possible; for example, in sections 3 and 4
we use coordinates adapted to the symmetry. There is also a residual conformal
gauge freedom inherent in the decomposition g̃µν = Ω 2gµν . In [2] we fixed this
by requiring the conformal scalar curvature R̃ to be constant. For the explicit forms
of the conformal metrics used in sections 3 and 4 there is no remaining conformal
gauge freedom.

The evolution equation (9) is formally singular at I +, where Ω = 0. However in
[2] we showed how the offending terms can in fact be evaluated at I + in a regular
way. This makes use of the fact that the constraints (10)–(11) and the CMC slic-
ing condition (12) are also degenerate at I +. On a given spatial slice, we choose
spherical polar coordinates such that the cut of the slice with I + corresponds to
r = r+ = const. We expand the fields in finite Taylor series in r about r+ and substi-
tute them in the degenerate elliptic equations. Thus we obtain the first three radial
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derivatives of Ω and the zeroth and first radial derivative of π trri at I +. With this
information we can evaluate the formally singular terms in the evolution equation
(9) explicitly, provided that necessary conditions for smoothness of I + are satis-
fied. These include the condition that I + be shear-free and were obtained earlier in
[3]. We show that these regularity conditions are preserved under the time evolution.
While our analysis in [2] assumed vacuum, it is easy to see that it is unaffected by
the addition of the matter sources, as will be shown in a forthcoming paper [4].

3 Axisymmetric vacuum gravity

The first numerical implementation [5] of the scheme presented in section 2 assumed
vacuum and axisymmetry. The spatial conformal metric is written in quasi-isotropic
coordinates as

γ = e2η sinθ (dr2 + r2dθ 2)+ r2 sin2 θ dϕ 2, (13)

where η is a function of t, r and θ only, ∂/∂ϕ being the Killing vector. Preserva-
tion of this form of the metric under the time evolution implies a first-order elliptic
system for the shift vector similar to the Cauchy-Riemann equations.

The numerical implementation is based on fourth-order finite differences on a
logically Cartesian grid in r and θ . The grid is allowed to be non-uniform in r in
order to better resolve the steep gradients occurring near the horizon of the black
hole spacetimes we consider. We use black hole excision, i.e. the inner boundary is
placed just inside the horizon. This boundary is spacelike, so evolution equations
do not require any boundary conditions there. The outer boundary is placed at I +,
where the regularised form of the evolution equations is used, as outlined at the end
of the previous section. One-sided derivatives are used at both boundaries. The con-
straint equations, CMC slicing condition and spatial gauge condition are solved at
each time step using a nonlinear multigrid solver. The evolution equations are inte-
grated in time using the method of lines with a fourth-order Runge-Kutta method.

As a first test problem, we evolve Schwarzschild spacetime. We use the Schwarz-
schild metric in constant-mean-curvature coordinates derived in [6] with parameters
M = 1, K = 1

2 and C = 2. The Schwarzschild solution has a flat spatial conformal
metric, η = 0 in (13). We were able to evolve this solution for times as long as
103M (and potentially longer) without any signs of instability, with approximate
fourth-order convergence as expected.

Next, we include a gravitational wave perturbation. For this we choose η to be a
Gaussian centred at r = 0.5 with width σ = 0.05 and amplitude A = 10−4, initially
at rest. For comparison, the black hole horizon is at r = 0.0635 and I + is at r = 1.
We stress that this perturbation is evolved using the full nonlinear Einstein equations
rather than linearised theory.

We extract the gravitational radiation emitted by the system by evaluating the
Bondi news function [7] at I + in figure 1. The quasi-normal mode ringing phase is
clearly visible. The decay rate and frequency are consistent with the analytical result



Evolution of the Einstein Equations to Future Null Infinity 5

from linearised theory. At later times the numerical solution has not yet converged
for the resolutions used here so we are currently unable to resolve the expected
power-law tail.
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Fig. 1 ℓ= 2 contribution to the Bondi news function for a gravitationally perturbed Schwarzschild
black hole (mass M = 1) as a function of time. Numerical results for two different resolutions are
shown, (Nr,Nθ ) = (64,8) (dashed line) and (128,16) (solid line).

4 Spherically symmetric Einstein-Yang-Mills

In this section, we include matter in the form of a Yang-Mills field. This is confor-
mally invariant; we choose to work in the conformal spacetime here. The energy-
momentum tensor is

T̃µν = F̃(a)
µρ F̃ν

ρ(a)− 1
4
(4)γµν F̃(a)

ρσ F̃ρσ(a), (14)

where the field-strength tensor F̃(a)
µν is given in terms of the connection Ã(a)

µ by

F̃(a)
µν = ∂µ Ã(a)

ν −∂ν Ã(a)
µ + fabcÃ(b)

µ Ã(c)
ν . (15)

Greek indices refer to the internal Yang-Mills gauge group, and the symbol fabc
is totally antisymmetric. Here we choose the gauge group to be SU(2), so Greek
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indices range over 1,2,3 and we may write fabc = g[abc], where g is the Yang-
Mills coupling constant (taken to be g = −2 in the following) and [abc] is totally
antisymmetric with [123] = 1.

We now restrict ourselves to spherical symmetry. In this case we may always
choose isotropic coordinates such that the spatial conformal metric is flat. This im-
plies a first-order ordinary differential equation for the shift vector, which now has
a radial component only. For the Yang-Mills connection we make the ansatz

Ã(a)
i = [ai j]x jF(t,r), Ã(a)

0 = 0. (16)

A more general spherically symmetric ansatz will be considered in [4]. Energy-
momentum conservation implies a nonlinear wave equation for F .

The numerical method used for this system is similar to the one described in sec-
tion 3. One difference is that in spherical symmetry, the traceless momentum π tr i j

only has one independent component, and we choose to solve the momentum con-
straint for it rather than its evolution equation. Hence the system is fully constrained
and the only evolution equation used is the one for the Yang-Mills field. Also, our
implementation allows for both regular and excised centres so that we may start
from regular initial data until a black hole forms, which is then excised.

The Yang-Mills field F is taken to be a Gaussian centred at r = 0.5 with σ = 0.05
(again, I + is at r = 1) and variable amplitude. The time derivative of F is chosen
such that the pulse is approximately ingoing initially.

First we take the amplitude to be sufficiently small such that the field disperses.
Figure 2 shows F at the origin and at I + as a function of coordinate time. For
the higher numerical resolution used in this (1+ 1)-dimensional simulation (Nr =
4000) the tail is now well resolved. At the origin (and in fact at any finite distance)
the decay is approximately F ∼ t−4 whereas at I +, we find F ∼ t−2. This agrees
with the results in [8], and the same decay exponents were found in the test field
approximation [9].

Let us also evaluate the electric field

D̃ i(a) =

√
−(4)γF̃0i(a) ≡ [ai j]x jDF(t,r), (17)

also shown in figure 2. While this decays at the same rate as F at the origin, it
decays more slowly at I +, DF ∼ t−1. This may seem surprising at first but can be
explained by looking at the evolution equation for F ,

F,t = X rF,r +2r−1X rF − ÑDF . (18)

At I + the r-derivative of F appearing on the right-hand side must decay more
slowly than F itself because F decays faster away from I +. From (18) we infer
that DF must also decay at the slower rate.

For sufficiently high amplitudes, the field collapses and a black hole forms (figure
3). Interestingly, the Yang-Mills potential F does not decay to zero in this case but
approaches F = 2/(gr2), which is another vacuum state (the field strength tensor
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Fig. 2 The Yang-Mills potential F and electric field DF at I + (solid lines) and at the origin
(dashed lines) in a subcritical evolution. The initial Bondi mass is 0.63.
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Fig. 3 The Yang-Mills potential F and electric field DF at I + (solid lines) and at the horizon
(from when it forms, dashed lines) in a supercritical evolution. The initial Bondi mass is 3.0 and
the final Bondi mass (which agrees with the final black hole mass) is 2.5.
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vanishes). The electric field shows the same power-law decay as in the subcritical
evolution.
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