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Abstract In this talk we summarize our recent numerical and perturbative calcula-
tions which indicate that AdS spacetime is unstable. Namely, we study spherically
symmetric Einstein-massless-scalar field equations with negative cosmological con-
stant and show that this system is unstable against black hole formation for a large
class of initial data arbitrarily close to the AdS solution. We conjecture that this
instability is triggered by a resonant mode mixing which gives rise to diffusion of
energy from low to high frequencies.

Introduction

Anti-de Sitter (AdS) spacetime is the unique maximally symmetric solution of the
vacuum Einstein equations Gαβ +Λgαβ = 0 with negative cosmological constant
Λ . In d + 1 dimensions the AdS metric in global dimensionless coordinates (t ∈
R,x ∈ [0,π/2),ω ∈ Sd−1) reads

ds2 =
ℓ2

cos2x

(
−dt2 +dx2 + sin2xdω2

Sd−1

)
,

where ℓ2 = −d(d − 1)/2Λ sets the length scale. Conformal infinity x = π/2 is
the timelike cylinder I = R× Sd−1 with the boundary metric ds2

I = −dt2 +

sin2xdω2
Sd−1 .

Asymptotically AdS spacetimes (that is spacetimes which share the conformal
boundary with AdS but may be very different in the bulk, in particular may con-
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tain horizons) have come to play a central role in theoretical physics, prominently
due to the AdS/CFT correspondence which conjectures a duality between gravity in
the AdS bulk and a quantum field theory on the conformal boundary at infinity. By
the positive energy theorem, AdS spacetime is a ground state among asymptotically
AdS spacetimes, much as Minkowski spacetime is a ground state among asymp-
totically flat spacetimes. However, the evolutions of small perturbations of these
ground states are different. In the case of Minkowski, small perturbations disperse
to infinity and the spacetime is asymptotically stable [1]. In contrast, asymptotic
stability of AdS is precluded because the conformal boundary acts like a mirror at
which perturbations propagating outwards bounce off and return to the bulk that
results in complex nonlinear wave interactions in an effectively bounded domain.
Understanding of these interactions is the key to the problem of stability of AdS
spacetime.

Instability of anti-de Sitter spacetime

In this talk we summarize our recent numerical and perturbative calculations [2,
3] which indicate that AdS spacetime is unstable. To make the problem tractable
we assume spherical symmetry. Since by Birkhoff’s theorem spherically symmetric
vacuum solutions are static, we need to add matter to generate dynamics. A simple
matter model is the minimally coupled massless scalar field

Gαβ +Λgαβ = 8πG
(

∂α ϕ ∂β ϕ − 1
2

gαβ (∂ϕ)2
)
, gαβ ∇α ∇β ϕ = 0 . (1)

Let us recall that in the asymptotically flat case (Λ = 0) this model has led to im-
portant insights, such as the proof of the weak cosmic censorship by Christodoulou
[4, 5] and the discovery of critical phenomena at the threshold for black hole forma-
tion by Choptuik [6].

We use the following parametrization of asymptotically AdS spacetimes

ds2 =
ℓ2

cos2x

(
−Ae−2δ dt2 +A−1dx2 + sin2xdω2

Sd−1

)
where A and δ are functions of (t,x). As our results are qualitatively the same for
all d ≥ 3, for concreteness we set d = 3 herefater. Under the above assumptions the
Einstein-massless scalar field equations (1) reduce to the quasilinear hyperbolic-
elliptic system consisting of the scalar wave equation

∂t

(
A−1eδ ∂tϕ

)
=

1
tan2x

∂x

(
tan2xAe−δ ∂xϕ

)
(2)

and two constraint equations (we set 4πG = 1)
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∂xA =
1+2sin2x
sinxcosx

(1−A)− sinxcosxAρ, ∂xδ =−sinxcosxρ , (3)

where
ρ = A−2e2δ (∂tϕ)2 +(∂xϕ)2

is the scalar field energy density. This system has a one-parameter family of static
solutions (ϕ = 0,δ = 0,A= 1−M cos3 x/sinx) which are Schwarzschild-AdS black
holes for M > 0 and the pure AdS for M = 0.

We restrict our attention to smooth solutions with finite mass

M :=
1
2

π/2∫
0

Aρ tan2xdx.

It follows that near x = π/2 we must have (using y = π/2− x)

ϕ(t,x)= f∞(t)y3+O
(

y5
)
, δ (t,x)= δ∞(t)+O

(
y6
)
, A(t,x)= 1−2My3+O

(
y6
)
.

The local well-posedness of the above initial-boundary value problem was proved
in [7].

The dynamics of solutions starting from small initial data

(ϕ , ϕ̇)|t=0 = (ε f (x),εg(x))

can be approximated using weakly nonlinear perturbation analysis. To this end we
expand the solution in the perturbation series

ϕ = εϕ1 + ε3ϕ3 + ..., δ = ε2δ2 + ε4δ4 + ..., 1−A = ε2A2 + ε4A4 + ...

where (ϕ1, ϕ̇1)|t=0 = ( f (x),g(x)) and (ϕ j, ϕ̇ j)|t=0 = (0,0) for j > 1. Inserting this
expansion into the field equations (2) and (3) and collecting terms of the same order
in ε , we obtain a hierarchy of linear equations which can be solved order-by-order.
At the first order we get the linear wave equation

ϕ̈1 +Lϕ1 = 0,

where
L =− 1

tan2x
∂x
(
tan2x∂x

)
is an essentially self-adjoint operator on L2([0,π/2], tan2xdx). The eigenvalues of
L are ω2

j = (3+ 2 j)2 ( j = 0,1, . . . ) which implies that AdS is linearly stable. The
corresponding orthonormal eigenfunctions are

e j(x) = d j cos3xP
( 1

2 ,
3
2 )

j (cos2x) ,

where d j is a normalization factor. Thus, at the linear level the solution is
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ϕ1(t,x) =
∞

∑
j=0

a j cos(ω jt +β j)e j(x),

where amplitudes a j and phases β j are determined by the initial data. Using this
solution at the second order we get perturbations of the metric functions A2 and δ2
(so called backreaction) and at the third order we obtain an inhomogeneous linear
wave equation of the form ϕ̈3+Lϕ3 = S(ϕ1,A2,δ2). A calculation shows that in gen-
eral ϕ3 contains secular terms that grow linearly in time. They are due to four-wave
resonances present in the Fourier decomposition of the source S. We interpret this
breakdown of the perturbation analysis as indicating the onset of instability at time
of order O(ε−2). We believe that the secular terms appearing in ϕ3 are progeni-
tors of the higher-order resonant mode mixing which shifts the energy spectrum to
higher frequencies. This heuristics is corroborated by numerical simulations which
show that, indeed, generic perturbations start to grow rapidly after a time that scales
as ε−2. This growth eventually leads to the formation of a horizon.

To demonstrate the transfer of energy to higher frequencies we define the Fourier
coefficients

Φ j := (A1/2 ∂xϕ ,e′j) and Π j := (A−1/2eδ ∂tϕ ,e j)

and express the mass as the Parseval sum

M =
∞

∑
j=0

E j(t),

where
E j := Π 2

j +ω−2
j Φ2

j

is the j-mode energy. The evolution of the energy spectrum, that is the distribution
of mass among the modes, is depicted in Fig. 1 for gaussian initial data. Initially,
the energy is concentrated in low modes; the exponential cutoff of the spectrum
expresses the smoothness of initial data. During the evolution the range of excited
modes increases and the spectrum becomes broader. Just before horizon formation
the spectrum exhibits the power-law scaling E j ∼ j−α with exponent α ≈ 1.2. This
value seems to be universal, i.e., the same for all initial data (but it changes with
dimension d). Note that the formation of a black hole provides a cutoff for the
turbulent energy cascade (in amusing analogy to viscosity for the turbulent cas-
cade in fluids). Clearly, the formation of the power-law spectrum reflects the loss of
smoothness of the solution during collapse; it would be very interesting compute α
analytically.

To summarize, our numerical simulations and formal nonlinear perturbation
analysis lead us to conjecture that anti-de Sitter space is unstable against the forma-
tion of a black hole under arbitrarily small generic perturbations. We wish to stress
the genericity condition in the above conjecture: we do not claim that all perturbed
solutions end up as black holes. On the contrary, in [2] we gave evidence for the ex-
istence of non-generic solutions that remain non-singular for very long (possibly in-
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Fig. 1 Log-log plot of the energy spectrum at three moments of time: initial, intermediate, and just
before collapse. The fit of the power law E j ∼ j−α at time t = 1495 gives the slope α ≈ 1.2.

finite) time. In particular, preliminary calculations based on the Poincaré-Lindstedt
method indicate the existence of time periodic solutions. A similar conjecture (ex-
istence of geons) was put forward by Dias, Horowitz and Santos [8] for the vacuum
Einstein equations.

The results described above have opened up new and unexpected research paths
lying at the interface of classical general relativity and turbulence theory. Explo-
ration of these paths will hopefully lead to better understanding of the dynamics of
asymptotically AdS spacetimes, which in turn may have interesting implications in
gauge/gravity dualities.
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