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Abstract The striking similarity of the laws of black hole mechanics with thermo-
dynamics was first established in case of general relativity (GR). A natural question
is to ask whether this analogy is a peculiar property of GR or a robust feature of
any generally covariant theory of gravity. We study this question in the context of
Lanczos-Lovelock gravity and provide a proof of classical quasi stationary second
law.

1 Introduction

General relativity (GR), being quantum mechanically non-renormalizable, may
make sense as a Wilsonian effective theory working perturbatively in powers of the
dimensionless small parameter G(Energy)D−2, where G is the D-dimensional New-
ton’s constant. Then the Einstein-Hilbert Lagrangian is the lowest order term (other
than the cosmological constant) in a derivative expansion of generally covariant ac-
tions for a metric theory, and the presence of higher curvature terms is presumably
inevitable. In general, the specific form of these terms will depend on the detailed
features of the quantum gravity model. Still, from a purely classical point of view, a
natural modification of the Einstein-Hilbert action is to include terms preserving the
diffeomorphism invariance and still leading to an equation of motion containing no
more than second order time derivatives. Interestingly, this generalization is unique,
[1, 2] and goes by the name of Lanczos-Lovelock gravity. Lanczos-Lovelock gravity
is free from perturbative ghost [3] and leads to a well-defined initial value formalism
[4]. The lowest order Lanczos-Lovelock correction term in space time dimensions
D > 4, namely the Gauss-Bonnet term, also appears as a low energy α ′ correction
in case of heterotic string theory [3, 5]. Hence, it is interesting to pursue various
classical and semi classical properties of Lanczos-Lovelock gravity. For example,
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the striking similarity of the laws of black hole mechanics with thermodynamics
was first established in case of general relativity [6] and a natural question is to ask
whether this analogy is a peculiar property of GR or a robust feature of any gener-
ally covariant theory of gravity. Studying the properties of black holes in a general
Lanczos-Lovelock theory may provide a partial answer to this important question.

The equilibrium state version of first law for black holes was established by Wald
and collaborators [7, 8] for any arbitrary diffeomorphism invariant theory of grav-
ity. The entropy of the black hole can be expressed as a local geometric quantity
integrated over a space-like cross section of the horizon and is associated with the
Noether charge of Killing isometry that generates the horizon.

Implicit in the investigations which uses the Wald entropy in these theories is the
assumption that the entropy associated with a horizon behaves like ordinary ther-
modynamic entropy. But, the equilibrium state version of first law for black holes,
established by Wald and collaborators [7, 8] requires the existence of a stationary
black hole with regular bifurcation surface. As a result, from the equilibrium state
version of first law, it is not immediately clear whether the Wald entropy always
increases under physical processes, except for black holes in GR, in which the “area
theorem” asserts that area of a black hole can not decrease in any process provided
null energy condition holds for the matter fields [9]. The area theorem, in turn,
follows from Raychaudhuri equation and crucially depends on the contracted Ein-
stein’s equation Rabkakb = 8π Tabkakb where ka is the tangent to the horizon. Since
the entropy of black holes is no longer proportional to area in Lanczos-Lovelock
models of gravity, there is no obvious assurance that the entropy still obeys an in-
crease theorem. As a result, the question of validity of the second law of black hole
thermodynamics for arbitrary theory of gravity remains an unresolved issue. Except
for the case of f (R)-gravity [10], there is no proof of the analog of Hawking’s area
theorem beyond GR. In the quasi-stationary case, an argument for second law valid
for all diffeomorphism invariant gravity theories was given in [10]; but it is based
on the assumption that the stationary comparison version of the first law implies the
physical process version for quasi-stationary processes.

For the thermodynamic interpretation to be valid, we would expect horizon en-
tropy to increase when a black hole in the Lanczos-Lovelock model participates in
some physical process, like, e.g., accretion of matter. Recently, a direct proof of the
physical process version of first law is proposed for Einstein-Gauss-Bonnet (EGB)
gravity [11] which establishes that the net change of black hole entropy during a
physical process is positive as long as matter satisfies null energy condition.
Here, we investigate this question for general Lanczos-Lovelock models and show
that during a physical process, the Wald entropy of stationary black holes in gen-
eral Lanczos-Lovelock gravity monotonically increases provided the matter stress
energy tensor obeys null energy condition. As a result, not only the net change of
the entropy is positive, but the entropy is increasing at every cross section of the
horizon. In this paper, we will present the essential idea and main steps of the cal-
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culations. For more details of the derivation, see [12].

Let us start with a brief review of the properties of stationary, non-extremal,
Killing horizons. (We adopt the metric signature (−,+,+,+, ...) and our sign con-
ventions are the same as those of [13].) In a D-dimensional spacetime, the event
horizon is a null hyper-surface H parametrized by an affine parameter λ . The vec-
tor field ka = (∂λ )

a is tangent to the horizon and obeys geodesic equation. All λ =
constant slices are space-like and foliate the horizon. Any point p on such slices
has coordinates {λ ,xA} where xA, (A = 2, · · · ,D) are the coordinates of a point on
λ = 0 slice connected with p by a horizon generator. We can construct a basis with
the vector fields, {ka, la,ea

A} where la is a second null vector such that laka = −1.
The induced metric on any slice is γab = gab + 2k(alb) and kaγab = 0 = laγab. The
change of the induced metric from one slice to another can be obtained from the
metric evolution equation [13],

Lkγab = 2
(

σab +
θ

(D−2)
γab

)
, (1)

where σab is the shear and θ is the expansion of the horizon. If the event horizon is
also a Killing horizon 1, i.e. the horizon generators are the orbits of a Killing field
ξ a = (∂/∂v)a, which is null on the horizon, then the surface gravity κ of the horizon
is defined as ξ a∇aξ b = κ ξ b. For stationary spacetimes with a Killing horizon, both
the expansion and shear vanish and using Raychaudhuri equation and the evolution
equation for shear, we obtain [14, 13] that on the horizon,

ξ aξ cγb
i γd

k Rabcd = 0 = Rabξ aξ b = 0 (2)

and

ξ aγb
i γc

j γd
k Rabcd = 0. (3)

We would like to emphasize that in order to derive these relationships, we have only
used the fact that the horizon is a Killing horizon with zero expansion and shear
without assuming any further symmetry.

We would like to consider the situation when a stationary black hole is perturbed
by a weak matter stress energy tensor and ultimately settles down to a stationary
state in the asymptotic future. Since the black hole is stationary in the asymptotic
future, the vector field ξ a is an exact Killing vector at late times. The accretion
process is assumed to be slow such that all changes of the dynamical fields are first
order in some suitable bookkeeping parameter ε and that we can neglect all viscous
effects. More specifically, we assume that, θ ∼ σab ∼ O(ε).

In GR, a concrete example of such a physical process is a black hole of mass M
slowly accreting matter for a finite time and ultimately settling down to a stationary

1 Here we make an assumption, that the event horizon of a stationary black hole is also a Killing
horizon with regular bifurcation surface. Although this is certainly true for GR, we are not aware
of any proof for Lanczos-Lovelock gravity.
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state. Then a linearized version of the Raychaudhuri equation gives,

dθ
dλ

≈−Rabkakb =−8π Tabkakb, (4)

where, we have used Einstein’s equation to get the second equality. If the matter
stress tensor satisfies null energy condition, i. e. Tabkakb ≥ 0, the rate of change of
the expansion is negative on any slice prior to the asymptotic future. Since the ex-
pansion vanishes in the future, the generators must have positive expansion during
the accretion process. As a result, the area is monotonically increasing in the phys-
ical process. Note that, the result is crucially dependent on the field equation. As a
result, the monotonicity of the horizon area is only valid in case of GR. Our aim is
to prove a same statement for the Wald entropy during a dynamical change of the
black holes in Lanczos-Lovelock gravity.

We shall now turn our attention to the features of Lanczos-Lovelock gravity.
As discussed before, a natural generalization of the Einstein-Hilbert Lagrangian is
provided by the Lanczos-Lovelock Lagrangian, which is the sum of dimensionally
extended Euler densities,

L D =
[D−1)/2]

∑
m=0

αmL D
m , (5)

where the αm are arbitrary constants and L D
m is the m-th order Lanczos-Lovelock

term given by,

L D
m =

1
16π

[D−1)/2]

∑
m=0

1
2m δ a1b1...ambm

c1d1...cmdm
Rc1d1

a1b1
· · ·Rcmdm

ambm
, (6)

where Rcd
ab is the D dimensional curvature tensor and the generalized alternating

tensor δ ...
... is totally anti-symmetric in both set of indices. The Einstein-Hilbert La-

grangian is a special case of Eq. (6) when m = 1. The field equation of Lanczos-
Lovelock theory is, Gab/(16π)+αmE(m)ab = (1/2)Tab where,

E i
(m) j =− 1

16π
1

2m+1 δ ia1b1...ambm
jc1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

, (7)

and m ≥ 2. For convenience, we have written the GR part (i.e. for m = 1) separately
so that the GR limit can be easily verified by setting all αm’s to zero. Spherically
symmetric black hole solutions in Lanczos-Lovelock gravity was derived in [15, 16]
and the Wald entropy associated with a stationary Killing horizon is [17, 18, 19],

S =
1
4

∫
ρ
√

γ dA, (8)

where the entropy density
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ρ =

(
1+

[D−1)/2]

∑
m=2

16πmαm
(D−2)L(m−1)

)
. (9)

The integration is over (D−2)-dimensional space-like cross-section of the horizon
and (D−2)L(m−1) is the intrinsic (m− 1)-th Lanczos-Lovelock scalar of the horizon
cross-section. We would like to prove that this entropy always increases when a
black hole is perturbed by a weak matter stress energy tensor of O(ε) provided the
matter obeys null energy condition.

The change in entropy is [10],

∆ S =
1
4

∫
H

(
dρ
dλ

+θ ρ
)

dλ
√

γ dA. (10)

We define a quantity Θ as,

Θ =

(
dρ
dλ

+θ ρ
)
. (11)

In case of GR, Θ is equal to the expansion parameter of the null generators. But, in
case of a general gravity theory, Θ is the rate of change of the entropy associated
with a infinitesimal portion of horizon (see [10] for similar construction in f (R)
gravity). We would like to prove that given null energy condition holds, Θ is positive
on any slice in a physical process.

In order to proceed, we would like to study the rate of change of Θ along the
congruence using Raychaudhuri equation and the evolution equation of shear [13].
We are only interested in quantities first order in perturbation over a background
stationary spacetime. Therefore, when we encounter a product of two quantities
X and Y , to extract the part linear in perturbation, we will always express such a
product as,

XY ≈ X (B)Y (P)+X (P)Y (B), (12)

where X (B) is the value of the quantity X evaluated on the stationary background and
X (P) is the perturbed value of X linear in perturbation. Note that, on the stationary
background, Raychaudhuri equation demands R(B)

ab kakb = 0 and since T (B)
ab kakb = 0,

we have E(B)
(m)abkakb = 0. Also, to simplify the calculation, we use diffeomorphism

freedom to make the null geodesic generators of the event horizon of the perturbed
black hole coincide with the null geodesic generators of the background stationary
black hole [20].

Using the perturbation scheme mentioned above and the evolution equation of θ
and σab to linear order as dθ/dλ ≈ −R(P)

ab kakb and dσab/dλ ≈ C(P)
acdbkckd and fur-

ther using conditions Eq.(2) and Eq.(3) on the stationary background, the evolution
equation of Θ to linear order in perturbation can be written as [12],

dΘ
dλ

=−8π Tabkakb +O(ε2), (13)
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Eq.(13) shows that if the null energy condition holds, the rate of change of Θ is
always negative during a slow classical dynamical process (i.e. ignoring the terms
which are higher order in the perturbation) which perturbs the black hole and leads
to a new stationary state. Since, the final state is assumed to be stationary, both θ
and σ and as a consequence, Θ vanishes in the asymptotic future. Hence, we can
use the same argument as with the expansion parameter in case of GR to conclude
that Θ must be positive at every slice during the physical process. As a result, we
conclude that the horizon entropy of black holes in Lanczos-Lovelock gravity is a
monotonically increasing function during any quasi-stationary physical process, i.e.

dS
dλ

≥ 0. (14)

which is what we set out to prove.
In case of a dynamical scenario, it is possible to write down several candidates for
the black hole entropy beyond GR [21], such that all the expressions have the same
stationary limit. We have actually chosen a particular expression and the validity of
Eq.(14) favors such a choice. In fact, in ref. [8], a local and geometrical prescription
for the entropy of dynamical black holes is proposed. This proposal is based on a
boost invariant construction and agrees with the Wald’s Noether charge formula for
stationary black holes and their perturbations. Interestingly, for Lanczos-Lovelock
gravity, the entropy expression used in this work matches the expression obtained
from the boost invariant construction. Consequently, our result provides a strong jus-
tification in favor of the prescription for dynamical entropy as proposed in ref. [8].
This may also be important to decide the right candidate for the entropy of non
stationary black holes for non Lanczos-Lovelock gravity models. Also, one would
like to relax the quasi-stationarity physical process assumption and calculate the full
change of the Wald entropy along the horizon to understand the validity of classical
second law for the Lanczos-Lovelock gravity.

The last point is related to the special status enjoyed by Lanczos-Lovelock
models. The derivation presented here, used identities which are very specific to
Lanczos-Lovelock models and do not generalize to an arbitrary theory of gravity.
Therefore, it would be worthwhile to find a general approach which can answer
whether classical second law holds in a physical process for any diffeomorphism
invariant gravity theory or applies to a special class of action functionals. This may
be useful as a criterion to select a sub class of diffeomorphism invariant actions as
preferred theories where a consistent formulation of black hole thermodynamics is
possible.
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