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Abstract We review recent developments in the theory of inflation and cosmologi-
cal perturbations produced from inflation. After a brief introduction of the standard,
single-field slow-roll inflation, and the curvature and tensor perturbations produced
from it, we discuss possible sources of nonlinear, non-Gaussian perturbations in
other models of inflation. Then we describe the so-called δN formalism, which is
a powerful tool for evaluating nonlinear curvature perturbations on super Hubble
scales.

1 Introduction

One of the most successful applications of the theory of general relativity is cos-
mology. Over the past half century the big-bang theory of the universe, that the
universe was born in an extremely hot and dense state, expanded explosively and
cooled down to the present state, was observationally tested from various aspects
and it is now firmly established. According to the big-bang theory, our universe is
about 14 Giga years old, and the universe was radiation-dominated in the beginning.
It became matter-dominated when the universe was about 100,000 years old, which
happens to be about the same time when the photons decoupled from baryons, and
started to travel freely until today, which are observed as the cosmic microwave
background (CMB) radiation. The epoch when the CMB photons were scattered
last before they reach us forms a 3-dimensional hypersurface, and it is called the
last scattering surface (LSS).

Despite its tremendous success, there are still a couple of very basic problems
that the big-bang theory cannot explain. One of them is the horizon problem or
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perhaps better to be called the causality problem, and the other the flatness problem
or the entropy problem.

1.1 Horizon problem

Let us first consider the horizon problem. The big-bang theory assumes an homoge-
neous and isotropic universe on large scales. So the metric is assumed to be in the
form,

ds2 =−dt2 +a2(t)dσ2
(3) , (1)

where dσ2
(3) is the 3-metric of a constant curvature space with K being the curva-

ture, (3)Ri j
km = K(δ i

kδ j
m −δ i

mδ j
k ). A coordinate system that spans dσ2

(3) is said to be
comoving because an observer staying at a fixed point on the 3-space is comoving
with the expansion of the universe. In this spacetime, the time-time component of
the Einstein equations, the Friedmann equation, is

H2 =
ρ

3M2
pl
− K

a2 ; H ≡ ȧ
a
, (2)

where M2
pl = (8πG)−1 in the units h̄ = c = 1, and the trace of the space-space com-

ponents of the Einstein equations gives

ä
a
=−ρ +3P

3M2
pl

, (3)

where ρ is the energy density and P is the pressure of the universe. This latter
equation shows that the expansion of the universe is always decelerating as long as
ρ+3P> 0, which holds for both radiation P= ρ/3 and matter P= 0. For simplicity,
if we assume a simple equation of state P/ρ =w=constant and K = 0 (which should
be a good approximation in the early universe when w = 1/3 since ρ ∝ a−3(1+w) =
a−4), one finds

a ∝ tn ; n =
2

3(1+w)
< 1 for w >−1

3
. (4)

This result may be regarded as a consequence of the attractive nature of the gravita-
tional force.

Now we introduce the conformal time dη = dt/a(t), and rewrite the metric as

ds2 = a2(η)dŝ2 ; dŝ2 =−dη2 +dσ2
(3) . (5)
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Fig. 1 Horizon problem. The conformal time of the last scattering surface ηLSS from η = 0 is
about 1/30 of that of today η0.

Since the conformal transformation of the metric does not change the causal struc-
ture, the static metric dŝ2 perfectly describes the causal structure of the universe. If
the range of η were infinite to the past, there would be no horizon problem. The
problem is that the conformal time is finite in the past if w > −1/3 or ρ +3P > 0,
because

η =
∫ t

0

dt ′

a(t ′)
∝
∫ t

0

dt ′

t ′n
; n =

2
3(1+w)

. (6)

This implies that the size of lightcone emanating from a point at the beginning of
the universe when η = 0 will cover only a finite fraction of spacetime. Since the
comoving distance traveled by light is equal to the corresponding conformal time
interval, the comoving radius of the causally connected region on the LSS is equal
to its conformal time ηLSS. From the fact that the LSS is located at redshift z ∼ 103

and the universe is approximately matter-dominated since then, one finds that this
region will cover only a tiny fraction (about 10−3 sr) of the sky. This is the horizon
problem (see Fig. 1).

The solution is clear: The horizon problem disappears if the conformal time is
either infinite in the past or the beginning of the universe η = 0 is extended suffi-
ciently back in time to cover the whole visible universe. Since the comoving radius
of the visible universe on the LSS is η0 −ηLSS where η0 is the conformal time to-
day, the problem is solved if ηLSS > η0 −ηLSS. In Einstein gravity, this means that
the equation of state must be w < −1/3 or the expansion of the universe must be
accelerating (ä > 0) for a sufficient lapse of time in the very early universe.

Here we should note that solving the horizon problem does not mean explaining
the homogeneity and isotropy of the universe. As clear from the above argument,
we had to assume the homogeneity and isotropy of the universe to pose the horizon
problem. This point is very often misunderstood in the literature.
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1.2 Flatness problem

Again we assume a spatially homogeneous and isotropic universe, Eq. (1). The
Friedmann equation (2) tells us that the curvature term K/a2 is completely negli-
gible in the early universe when ρ ∝ a−4. Conversely, if the curvature term was of
the same order of magnitude as the density at an epoch in the early universe, the uni-
verse must have either collapsed (if K > 0) or become completely empty (if K < 0)
by now.

Alternatively, since the energy density is dominated by radiation in the early
universe and so is the entropy of the universe, the problem may be rephrased as the
existence of huge entropy within the curvature radius of the universe,

S = T 3

(
a√
|K|

)3

≈ T 3
0

(
a0√
|K|

)3

> T 3
0 H3

0 ≈ 1087 , (7)

where T0 ≈ 2.7 K is the CMB temperature today [1] and H0 ≈ 72 km/s/Mpc is the
Hubble constant [2]. Hence the flatness problem may be called the entropy problem.

It is then apparent that the solution to the flatness problem needs huge entropy
production at a sufficiently early stage of the universe.

1.3 Inflation as a solution to horizon and flatness problems

A simple and perhaps the best solution to the horizon and flatness problems is given
by the inflationary universe [3, 4]. Let us assume that the universe was dominated
by a spatially homogeneous scalar field. For a minimally coupled canonical scalar
field ϕ , we have

ρ =
1
2

ϕ̇ 2 +V (ϕ) , P =
1
2

ϕ̇ 2 −V (ϕ) , (8)

so ρ + 3P = 2
(
ϕ̇ 2 −V (ϕ)

)
. Hence if ϕ̇ 2 < V (ϕ), we may have accelerated ex-

pansion. In particular, if the energy density is dominated by the potential energy,
ϕ̇ 2 ≪ V (ϕ), the motion of the scalar field can be ignored within a few expansion
times ∼ H−1, and the universe expands almost exponentially,

H2 ≈ ρ
3M2

pl
≈ constant. (9)

The curvature term K/a2 becomes completely negligible.
Thus if the universe is dominated by the potential energy, or the vacuum energy,

and the potential energy is converted to radiation after a sufficient lapse of time of
such a stage, a huge entropy is produced and the horizon and flatness problems are
solved simultaneously.
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2 Slow-roll inflation and vacuum fluctuations

There have been a number of proposals for inflationary models. Among others, a
simplest class of models, and which explains the observational data almost per-
fectly, is the slow-roll infation [5, 6, 7]. The field equation for ϕ and the Friedmann
equation are

ϕ̈ +3Hϕ̇ +V ′(ϕ) = 0 , H2 =
1

3M2
pl

[
1
2

ϕ̇ 2 +V (ϕ)
]
, (10)

where we have justifiably neglected the curvature term.

Fig. 2 The Hubble radiusL = H−1 and the length scale L = a/k of a comoving wavenumber k in
the inflationary cosmology, and the definition of the number of e-folds N(ϕ).

The standard slow-roll condition consists of two assumptions. One is that ϕ̈ is
negligible compared to 3Hϕ̇ in the field equation, that is, the equation of motion is
friction-dominated. The other is that the kinetic term ϕ̇ 2/2 is negligible compared
to the potential term V in the energy density. Under this condition we have

ϕ̇ =−V ′(ϕ)
3H

; H2 =
V

3M2
pl
. (11)

Then the potential energy dominance implies

ε ≡− Ḣ
H2 =

3
2

ϕ̇ 2

1
2

ϕ̇ 2 +V
≈ 3ϕ̇ 2

2V
≈

M2
pl

2
V ′2

V 2 ≡ εV ≪ 1 , (12)
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that is, the universe is expanding almost exponentially, and the friction-dominated
equation of motion |ϕ̈/(3Hϕ̇)| ≪ 1 implies

V ′′

3H2 ≈ M2
pl

V ′′

V
≡ ηV ≪ 1 . (13)

The single-field slow-roll inflation satisfies these conditions.
The important property of slow-roll inflation is that Eq. (11) is completely inte-

grable since H is a function of ϕ . In particular, there is one-to-one correspondence
between ϕ and t. So instead of the cosmic time t we may measure the time in terms
of the value of the scalar field.

Here we introduce a quantity which plays a very important role in the dynamics
of slow-roll inflation, namely the number of e-folds counted backward in time, say
from the end of inflation to an epoch during inflation,

a(tend)

a(t)
= exp[N(t → tend)] → N = N(ϕ) =

∫ tend

t(ϕ)
Hdt . (14)

Its important property is that by definition it does not depend on how and when
the inflation began. As shown in Fig. 2, N is uniquely determined in terms of the
value of the scalar field (up to a constant which depends on the choice of an epoch
from which N is computed), and one can associate N with the time at which a given
comoving wavenumber k crossed the Hubble radius, k = aH, at which the value of
the scalar field was ϕk; N = N(ϕk). As we shall see below, this turns out to be an
essential quantity for the evaluation of the curvature perturbation from inflation.

2.1 Curvature perturbation

Let us now consider the curvature perturbation produced from inflation. It arises
from the quantum vacuum fluctuations of the inflaton field ϕ . Since a rigorous
derivation would take too much space, here we give an intuitive, rather hand-waving
derivation. We caution that it could well lead to an incorrect result if used blindly.

The vacuum fluctuations of the inflaton field with a comoving wave number k
is given simply by its positive frequency function, φk. Because of the condition
V ′′/H2 ≪ 1, on scales k/a ≫ H, the inflaton field fluctuation behaves like a mini-
mally coupled massless scalar. Hence we have

|⟨δϕ |k⟩|2 = |φk|2 , φk ∼
1

a3/2
√

2ωk
e−iωkt ; ωk =

k
a
≫ H . (15)

As the universe expands the physical wavenumber decreases exponentially and be-
comes smaller than the Hubble parameter, k/a < H, or the physical wavelength
exceed the Hubble radius. Then the oscillations of φk are frozen. This could be re-
garded as “classicalization’ of the quantum fluctuations. Not that this is merely an



Inflation and Birth of Cosmological Perturbations 7

interpretation. In a more rigorous sense, freezing of the mode function is a process
toward infinite squeezing of the vacuum state.

Setting a = k/H in Eq. (15) gives

φk ∼
H√
2k3

;
k
a
≪ H . (16)

Therefore the mean square amplitude in unit logarithmic interval of k is

⟨δϕ 2⟩k ≡
4πk3

(2π)3 |φk|2 ≈
(

H
2π

)2

k/a=H
. (17)

Inclusion of the non-trivial evolution of the background spacetime and the coupling
of the scalar field fluctuation with the metric fluctuation do not change the above
estimate if we interpret δϕ in the above as those evaluated on the flat slicing, that
is, on hypersurfaces on which the spatial scalar curvature remains unperturbed.

It is known that the curvature perturbation on the comoving hypersurface Rc is
conserved if the perturbation is adiabatic [8]. The comoving hypersurface is defined
as a surface of uniform ϕ . Then the gauge transformation from the flat slicing to the
comoving slicing gives the relation between Rc and δϕ ,

Rc =−H
ϕ̇

δϕ . (18)

Since this is conserved for k/a < H, the spectrum of the comoving curvature per-
turbation in unit logarithmic interval of k is given by

PR(k)≡ 4πk3

(2π)3 |Rk|2 ≈
(

H2

2πϕ̇

)2

k/a=H
. (19)

A rigorous, first-principle derivation of the above result was first done in [9, 10].
The important relation of the above result with the number of e-folds was first

pointed out in [11]: If we rewrite Eq. (14) as

N =
∫ tend

t
Hdt =

∫ ϕend

ϕ

H
ϕ̇

dϕ , (20)

we find

δN(ϕk) =

[
∂N
∂ϕ

δϕ
]

k/a=H
=

[
−H

ϕ̇
δϕ
]

k/a=H
= Rc , (21)

provided that we identify δϕ with the scalar field fluctuation evaluated on the flat
hypersurface. This is called the δN formula.

The δN formula implies that we only need the knowledge of the background
evolution to obtain the power spectrum of the comoving curvature perturbation, once
we know the amplitude of the quantum fluctuations of the scalar field at the horizon
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crossing (i.e. when k/a = H). It is quite generally given by H/(2π) in slow-roll
inflation. With careful geometrical considerations, the δN formula can be extended
to general multi-field inflation [12],

PR(k) =
(

H
2π

)2

||∇N||2; ||∇N||2 ≡ Gab(ϕ)
∂N
∂ϕ a

∂N
∂ϕ b , (22)

where Gab is the field space metric and it is assumed that the vacuum expectation
values are given by

⟨δϕ aδϕ b⟩= Gab
(

H
2π

)2

. (23)

The nonlinear generalization of the δN formalism will be discussed in Sec. 4.

2.2 Tensor perturbation

There are not only vacuum fluctuations of the inflaton field but also those of the
transverse-traceless part of the metric, ∂ ihT T

i j = δ i jhT T
i j = 0, that is, the tensor per-

turbation or gravitational wave degrees of freedom. If we construct the second-order
action for hT T

i j , we find

S ∼
M2

pl

8

∫
d4x

√
−g(ḣT T

i j )2 + · · · . (24)

To quantize hT T
i j it is convenient to normalize the kinetic term to the canonical form.

This gives

S ∼ 1
2

∫
d4x

√
−g(ϕ̇i j)

2 + · · · ; ϕi j ≡
Mpl

2
hT T

i j . (25)

If one writes down the field equation for ϕi j, one finds its mode function ϕk obeys
exactly the same equation as the one for a minimally coupled massless scalar field,

ϕ̈k +3Hϕ̇k +
k2

a2 ϕk = 0 . (26)

Since there are two independent degrees of freedom in ϕi j, the power spectrum of
the tensor perturbation hT T

i j is obtained as

PT (k) =
4

Mpl
×2× 4πk3

(2π)3 |ϕk|2 =
8H2

(2π)2M2
pl
. (27)
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Taking the ratio of the tensor spectrum to the curvature perturbation spectrum,
we find [12]

r ≡ PT

PR
≤ 8|nT |=−2

Ḣ
H2 , (28)

where nT is the tensor spectral index, nT = d lnPT (k)/d lnk, and the equality holds
for the case of single-field slow-roll inflation. This is a consistency relation in gen-
eral slow-roll inflation. As a proto-type example, if we consider chaotic inflation [7],
we expect to have r ∼ 0.1.

The important point to be kept in mind is that the existence of the vacuum fluctu-
ations of the tensor part of the metic is a proof of the existence of quantum gravity.
These fluctuations exist in any theory of gravity that respects general covariance,
apart from possible inessential modifications of the spectrum. Thus a clear detection
of the tensor spectrum will be a confirmation of not only the inflationary universe
but also quantum gravity.

3 Origin of non-Gaussianity

The standard, single-field slow-roll inflation predicts that the curvature perturbation
is a Gaussian random field and it has an almost scale-invariant spectrum. This seems
to fit the current observational data quite well [13], it is quite possible that the actual
model turns out to be non-standard. Maybe it is multi-field, maybe non-slow-roll
and/or non-canonical. In such a case, the curvature perturbation may become non-
Gaussian. Search for possible non-Gaussian signatures in the primordial curvature
perturbation has become one of the important directions in observation in recent
years [14].

Here we consider possible origins of non-Gaussianity in the curvature pertur-
bation. Essentially one can classify the origins into three categories: (1) Self-
interactions of the inflaton field and/or non-trivial vacua, (2) multi-field dynamics,
and (3) nonlinearity in gravity.

The non-Gaussianities of the first category are generated on subhorizon scales
during inflation, hence they are of quantum field theoretical origin. Those of the
second category are usually generated on superhorizon scales either during or after
inflation, and they are due to nonlinear coupling of the scalar field to gravity. Since
they are generated on superhorizon scales, they are of classical origin. Finally those
of the third category are due to nonlinear dynamics in general relativity. Hence they
are generated after the scale of interest re-enters the Hubble horizon. Since the last
category is not really primordial in nature, let us focus on the first two categories.
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3.1 Non-Gaussianity from self-interaction/non-trivial vacuum

It is known that conventional self-interactions by the potential are ineffective [15].
This can be seen by considering chaotic inflation, for example. In the simplest case
of a quadratic potential, V = m2ϕ 2/2, the inflaton is actually a free field apart from
the interaction through gravitation perturbations. But the gravitational interaction is
Planck-suppressed, i.e., it is always suppressed by a factor O(M−2

pl ). In the case of a
quartic potential, V = λϕ 4, it is known that λ should be extremely small λ ∼ 10−15

in order for it to be consistent with observation.
Thus some kind of unconventional self-interaction is necessary. A popular ex-

ample is the case of a scalar field with a non-canonical kinetic term such as DBI
inflation [16]. In this case the kinetic term takes the form,

K ∼ f−1(ϕ)
√

1− f (ϕ)ϕ̇ 2 ≡ f−1γ−1 . (29)

If we expand this perturbatively,

K = K0 +δ1K +δ2K +δ3K + · · · , (30)

we will find

δ2K ∝ γ3 , δ3K ∝ γ3+2 , (31)

since δγ = γ3δX where X ≡ f ϕ̇ 2/2. If we regard the third order part as the interac-
tion, the above implies that the scalar field fluctuation will be expressed qualitatively
as

δϕ ∼ δϕ0 + γ2δϕ 2
0 + · · · , (32)

where δϕ0 is the free, Gaussian fluctuation. Thus the non-Gaussianity in δϕ may
become large if γ , which mimics the Lorentz factor, is large [17].

A non-trivial vacuum state is another source of non-Gaussianity. If the universe
were a pure de Sitter spacetime, gravitational interaction would be totally negligible
in vacuum, except for the effect due to graviton (tensor mode) loops. This may be
regarded as due to the maximally symmetric nature of the de Sitter space, SO(4,1),
which has the same number of degrees of symmetry as the Poincare (Minkowski)
symmetry. In slow-roll inflation, the de Sitter symmetry is slightly broken. Neverthe-
less the effect induced by this symmetry breaking is small because it is suppressed
by the slow-roll parameter ε =−Ḣ/H2.

However, if the vacuum state does not respect the de Sitter symmetry, there can be
a large non-Gaussianity. Such a deviation from the quasi-de Sitter vacuum, usually
called the Bunch-Davies vacuum, may occur in various situations, studied e.g. in
[18, 19].
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3.2 Non-Gaussianity from multi-field dynamics

Non-Gaussianity may appear if the energy momentum tensor depends nonlinearly
on the scalar field even if the fluctuation of the scalar filed itself is Gaussian. This ef-
fect is generally important when the fluctuations are on superhorizon scales, i.e., the
characteristic wavelength is larger than the Hubble radius. It is small in single-field
slow-roll models because the linear approximation is valid to high accuracy [20],
generically suppressed by the slow-roll parameter ηV defined in Eq. (13).

For multi-field models, however, the contribution to the energy momentum tensor
from some of the fields can be highly nonlinear as depicted in Fig. 3.

Fig. 3 An illustration of the
energy density configuration
in the multi-field case. The
density of the A-matter/field
ρA may vary nonlinearly
without significantly affecting
the total energy density.

The important property of non-Gaussianity in this case is that it is always of the spa-
tially local type. Namely, to second order in nonlinearity, the curvature perturbation
will take the form [21],

Rc(x) = Rc,0(x)+
3
5

f local
NL R2

c,0(x) , (33)

where Rc,0 is the Gaussian random field and f local
NL is a constant representing the

amplitude of non-Gaussianity. The factor 3/5 in front of f local
NL is due to a historical

reason. The reason why it is of local type is simply causality: No information can
propagate over a length scale greater than the Hubble horizon scale.

Observationally, this type of non-Gaussianity can be tested by using the so-called
squeezed type templates where one of the wavenumbers, say k1 in the bispectrum
B(k1,k2,k3) is much smaller than the other two, k1 ≪ k2 ≈ k3 [14], and there are
a few observational indications that f local

NL is actually non-vanishing. For example,
the WMAP 7 year data analysis gave a one-sigma bound 11 < f local

NL < 53 (68%
CL) [13].
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4 δδδN formalism

As mentioned in Sec. 2, the δN formalism is a powerful tool to evaluate the co-
moving curvature perturbation on superhorizon scales. It then turned out that it can
be easily extended to the evaluation of nonlinear, non-Gaussian curvature perturba-
tions [22, 23]. Let us recapitulate its definition and properties:

(1) δN is the perturbation in the number of e-folds counted backward in time from
a fixed final time, say t = t f , to some initial time t = ti.

(2) The final time t f should be chosen such that the evolution of the universe has
become unique by that time, i.e., the universe has reached the adiabatic limit.
Then the hypersurface t = t f should be identified with a comoving (or uniform
density) slice, and the initial hypersurface t = ti should be identified with a flat
slice.

(3) δN is equal to the conserved (nonlinear) comoving curvature perturbation on
superhorizon scales at t > t f .

(4) By definition, it is nonlocal in time. However, because of its purely geometri-
cal definition, it is valid independent of which theory of gravity one considers,
provided that the adiabatic limit is reached by t = t f .

Fig. 4 Three different types of δN. The field space (ϕ1,ϕ2) in the figure represents the degrees
of freedom in the initial condition of the universe. The adiabatic limit is defined to be the stage by
which all the trajectories converge to a unique one.

There are various kinds of sources that generate δN. They may be classified into
three types, as depicted in Fig. 4. The left one describes a perturbation along the
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evolutionary trajectory of the universe. This case is the same as that of single-field
slow-roll inflation, in which the comoving curvature perturbation is conserved all
the way until it re-enters the horizon. The middle one is the case when a small
difference in the initial data develops into a substantial difference in δN. Typically
this is realized when there is some instability orthogonal to the trajectory, like the
case when the scalar field moves along a ridge. This type of sources of δN usually
induces a feature in the spectrum and/or bispectrum of the curvature perturbation.
The right one represents the case when the perturbation orthogonal to the trajectory
does not contribute to the curvature perturbation until or after the end of inflation, but
δN is generated due to a sudden transition that brings the universe into an adiabatic
stage. Typical examples are curvaton models [24, 25, 26] and multi-brid inflation
models [27, 28].

Here, for the sake of completeness, let us present the precise definition of the
nonlinear δN formula. See Fig. 5. It is based on the leading order approximation
in the spatial gradient expansion or the separate universe approach [22], where spa-
tial derivatives are assumed to be negligible in comparison with time derivatives.
At leading order of the spatial gradient expansion, if we express the spatial volume
element as

√
(3)γ = a3(t)exp[3R(t,x)] where a(t) is the scale factor of a fiducial ho-

mogeneous and isotropic universe, we easily find that the perturbation in the number
of e-folds along a comoving trajectory between two hypersurfaces t = t1 and t = t2
is given by

δN(t2, t1;xi) = R(t2,xi)−R(t1,xi) , (34)

where xi are the comoving coordinates. Here we note that this is purely a geometrical
relation. It has nothing to do with any equations of motion.

Fig. 5 Definition of nonlinear δN. It is defined as the perturbation in the number of e-folds from
an initial flat slice to a final comoving slice.

First we fix the final hypersurface t = t2. It should be taken at the stage when the
evolution of the universe has become unique. That is, there exists no isocurvature
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perturbation any longer that could develop into an adiabatic perturbation at later
epochs. Thus the comoving curvature perturbation is conserved at t > t2. In the
context of the concordance ΛCDM model of the universe, this corresponds to the
final radiation-dominated stage of the universe.

Next we choose the initial slice t = t1. It should be chosen to be flat. Here ‘flat’
means that the perturbation in the spatial volume element vanishes. Namely, the flat
slice is defined as a hypersurface on which R = 0. We note that despite its name,
the scalar curvature vanishes only in the linear theory limit: It is non-vanishing in
general in the nonlinear case.

Applying the above choice of the initial and final hypersurfaces to Eq. (34), it is
trivial to see that we have

δN(t2, t1;xi) = Rc(t2,xi) . (35)

Now by assumption Rc is conserved at t > t2. So it is the quantity we want to
evaluate. This completes the derivation of the nonlinear δN formula.

As mentioned above, since Eq. (34) is a pure geometrical relation, so is the non-
linear δN formula (35). This is the reason why it can be applied to any theory of
gravity as long as it is a geometrical (i.e. general covariant) theory.

Of course, the above definition tells us nothing about how to evaluate it in prac-
tice. In this respect, we have a very fortunate situation in the case of inflationary
cosmology. It is the fact that the evaluation of the quantum fluctuations of the in-
flaton field, whether it is single- or multi-component, can be most easily done in a
gauge in which the time slicing is chosen to be flat [12]. Thus we can choose the
initial slice to be an epoch when the scale of our interest has just exited the horizon
during inflation. Let the fluctuations of a multi-component scalar field on the flat
slice at t = t1 to be δϕ a. Then assuming that the values of the scalar field determine
the evolution of the universe completely, which is the case for slow-roll inflation,
the nonlinear δN can be simply evaluated as

δN = N(ϕ a +δϕ a)−N(ϕ a) , (36)

where N(ϕ a) is the e-folding number of the fiducial background. In particular, to
second order in δϕ a, we obtain

Rc = δN =
∂N
∂ϕ a δϕ a +

1
2

∂ 2N
∂ϕ a∂ϕ b δϕ aδϕ b + · · · , (37)

Comparing this with Eq. (33), we see that the curvature perturbation takes a bit more
complicated form that the simplest form. Nevertheless if we consider the bispec-
trum, i.e., the Fourier component of the three-point function ⟨Rc(x1)Rc(x2)Rc(x3)⟩,
we find there is a quantity that exactly corresponds to f local

NL defined in Eq. (33).
Namely [23],

3
5

f local
NL =

GabGcdNaNbcNd

2(||∇N||2)2 ; Na ≡
∂N
∂ϕ a , Nab ≡

∂ 2N
∂ϕ a∂ϕ b . (38)
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Before concluding this section, we mention the fact that the δN formalism does
not require the scalar field fluctuations to be Gaussian. In fact, except for the last
equation in the above, Eq. (38) which assumes the Gaussianity of δϕ a, the general
δN formula (36) or its second order version (37) can be used for non-Gaussian
δϕ a [29]. Such a case may happen, for example, in multi-field DBI inflation.

5 Summary

It has been about 30 years since the inflationary universe was first proposed, and
there is increasing observational evidence that inflation did take place in the very
early universe. Among others, the measured CMB temperature anisotropy is fully
consistent with the predictions of inflation that the primordial curvature perturbation
spectrum is almost scale-invariant and it is statistically Gaussian.

Inflation also predicts a scale-invariant tensor spectrum, and if the energy scale
of inflation is high enough as in the case of chaotic inflation, the tensor-scalar ratio
r can be as large as 0.1. If this is the case, the tensor perturbation will be detected
in the near future, and it will confirm not only the inflationary universe but also
quantum gravity.

Even if the tensor perturbation will not be detected, there may be other interesting
signatures of inflation. Non-Gaussianity from inflation is attracting attention as one
of those signatures that can distinguish or constrain models of inflation significantly.

We discussed that the origins of primordial non-Gaussianities may be classified
into three categories, according to different length scales on which different mecha-
nisms are effective:

(1) Quantum theoretical origin on subhorizon scales during inflation.
(2) Classical nonlinear scalar field dynamics on superhorizon scales during or after

inflation.
(3) Nonlinear gravitational dynamics after the horizon re-entry.

In particular we argued that non-Gaussianities in the second case are always of spa-
tially local type. We then mentioned that there are three different kinds of situations
in which such local non-Gaussianities can be generated, and described in some de-
tail a very efficient method to compute them, namely, the δN formalism.

Apparently identifying properties of primordial non-Gaussianities in the obser-
vational data is extremely important for understanding the physics of the early uni-
verse. Here we mentioned only the bispectrum or the 3-point function. But if it is
detected, higher order n-point functions may become important as a model discrim-
inator. Other types of non-Gaussianity discriminators may also become necessary.

What is important is that we are now beginning to test observationally the physics
of the very early universe, the physics at an energy scale closer to the Planck scale,
at a scale that can never be attained in high energy accelerator experiments.

Cosmology has become not only a precision science, but now it constitutes a
truly indispensable part of fundamental physics. General relativity is the backbone
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of cosmology. I wonder what Einstein would say if he were here in this very exciting
era – 100 years after he visited Prague.
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