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Abstract By an argument similar to that of Gibbons and Stewart, but in a different
coordinate system and less restrictive gauge, we show that any weakly asymptoti-
cally simple, analytic vacuum or electro-vacuum spacetime which is periodic in time
is necessarily stationary. We generalized this theorem to the presence of scalar fields
and, among other results, derived new expressions for the Bondi mass in this case.
Here we summarized these results and also briefly discuss some new considerations
concerning the periodic solutions within linearized theory of gravity.

1 Introduction

The inspiral and coalescence of binary black holes or neutron stars appears to be
the most promising source for the detectors of gravitational waves, so that there
has been much effort going into the development of numerical codes and analytic
approximation methods to find the corresponding solutions of Einstein’s equations.
One of the recent approaches [1, 2, 3], assumes the existence of a helical Killing
vector k. In a co-rotating frame k generates time translations but it becomes null on
the light cylinder and is spacelike outside. Hence, the spacetime is not stationary but
it is still periodic in the region where k is spacelike. Helical symmetry implies equal
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amounts of outgoing and ingoing radiation present for all the time, so the spacetime
is not expected to be asymptotically flat.

2 Non-existence of asymptotically flat periodic solutions periodic
in time

In [4] the authors used the spin-coefficient formalism to prove that any asymptoti-
cally flat vacuum periodic solution of Einstein’s equations is necessarily stationary.
They have proved the existence of Killing vector ∂u in the neighbourhood of null
infinity I which, however, is null by construction everywhere and hence does not
imply stationarity. In fact, even in the flat spacetime (stationary!) there is no Killing
vector which is everywhere null and extends to a translation on I . Therefore, the
Minkowski spacetime is not stationary according to the definition given in [4]. In pa-
per [5] we introduced a different coordinate system in which we were able to prove
the existence of Killing vector Ka which is null on I but timelike in its neighbour-
hood, see figure 1. Moreover, in [5, 6] we generalized the proof for the presence of
electromagnetic fields and scalar fields and derived new expressions for the Bondi
mass of two kinds of scalar fields, massless Klein-Gordon and conformal scalar
field1. Our main results are summarized in the following theorems and corollary.

Theorem 1. A weakly asymptotically simple vacuum or electro-vacuum spacetime
which is periodic in time and analytic in a neighbourhood of I necessarily has a
Killing vector which is timelike in the interior and extends to a translation on I . The
same holds for spacetimes with massless Klein-Gordon fields2 and for spacetimes
with conformally invariant scalar fields.

Corollary 1. In any weakly asymptotically simple, stationary electro-vacuum space-
time which is analytic in a neighbourhood of I , the electromagnetic field is also
stationary. The same holds for spacetimes with massless Klein-Gordon fields.

Theorem 2. The Bondi mass of the spacetime which is a weakly asymptotically sim-
ple solution to Einstein-massless-Klein-Gordon equations is given in terms of the
standard Newman-Penrose coefficients by

MB = − 1
2
√

π

∮ (
Ψ 0

2 + 1
3 ∂u(ϕ 0ϕ̄ 0)+σ0 σ̇0) dS, (1)

where ϕ is the complex scalar field. The corresponding mass-loss formula reads

ṀB = − 1
2
√

π

∮ (
σ̇0 ˙̄σ0 +2 ϕ̇ 0 ˙̄ϕ 0

)
dS,

1 Massless Klein-Gordon field is a solution to the standard wave equation ∇a∇aϕ = 0 while the
conformal scalar field satisfies the conformally invariant equation (∇a∇a +R/6)ϕ = 0.
2 In fact, this remains to be true also for a self-interacting scalar fields for which potential V (ϕ) is
appropriately decaying at I (see [6]).
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Fig. 1 The construction of the coordinate system and the Newman-Penrose null tetrad: the Killing
vector Ka is null on I + but timelike in its neighbourhood. Coordinate u is an affine parameter
along null generators γ(x2,x3)(u) of I +, r is an affine parameter along null generators γ̃(u,x2,x3)(r)
of hypersurfaces intersecting I at cuts u = constant. On these two-sphere cuts, the coordinates x2

and x3 are introduced in an arbitrary way.

where the dot means the derivative with respect to time u.
The Bondi mass of the spacetime with conformal-scalar sources is given by

the standard Newman-Penrose expression identical with (1) for ϕ 0 = 0. The Bondi
mass-loss formula acquires the form

ṀB = − 1
2
√

π

∮ (
σ̇0 ˙̄σ0 +2(ϕ̇ 0)2 −ϕ 0 ϕ̈ 0) dS (2)

where ϕ is the real scalar field. Expression (2) is not negative semidefinite; a conse-
quence of the null energy condition violation for conformally coupled scalar fields.

3 Helical symmetry in linearized gravity

In this last section we turn to another aspect of the helical symmetry. Although no
exact solutions of the Einstein equations possessing this symmetry are known, such
solutions have been constructed in various “toy models” as, for example, in scalar
gravity [7] or Nordström theory [8]. In [9] the authors have found solutions describ-
ing five dimensional asymptotically AdS black holes with scalar field. These space-
times have only one Killing vector (and hence are not stationary and axisymmteric)
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of the form K = ∂t +ω∂ψ , which is tangent to the null generators of the horizon
and can be asymptotically timelike, null or spacelike, depending on the parameters
of the solution. Thus, these solutions exhibit a kind of helical symmetry.

Here we present some properties of helically symmetric solutions representing
the fields of a particle moving on the circular orbit in the linearized Einstein’s the-
ory. We also show that it is feasible to achieve the equilibrium configuration of a
binary system of such particles if both retarded and advanced solutions are taken
into account.

First we find the field produced by a point particle of mass mA (“particle A”)
moving uniformly along the circle of radius a with angular velocity ω in the plane
z = 0. We linearize the metric tensor in a usual way and introduce the trace-reversed
perturbation h̄µν , subject to the de Donder gauge condition ∇µ h̄µν = 0. Linearized
Einstein’s equations then acquire the well-known form

□h̄µν =−16π Tµν , (3)

where Tµν is an energy-momentum tensor corresponding to the point particle. The
advanced (−) and retarded (+) solutions to the wave equation (3), after the trans-
formation to the co-rotating frame, read

˜̄h±00 =−4mAγ
ρ±

(
1−ω2ar cosθ±

)2
, ˜̄h±11 =−4mAγ

ρ±
ω2a2 sin2 θ±,

˜̄h±01 =−4mAγ
ρ±

(
1−ω2ar cosθ±

)
ωasinθ±,

˜̄h±02 =
4mAγ

ρ±

(
1−ω2ar cosθ±

)
ωar cosθ±, (4)

˜̄h±12 =
4mAγ

ρ±
ω2a2r sinθ± cosθ±, ˜̄h±22 =−4mAγ

ρ±
ω2a2r2 cos2 θ±,

where the functions θ± and ρ± are given implicitly by

θ± =∓ωR±+ϕ0 − ϕ̂ , ρ± = R±±ωar sinθ±,

R± =
√

a2 + r2 + z2 −2ar cosθ±.
(5)

In terms of inertial coordinates, θ± = ωt±+ϕ0 −ϕ , where t± = t ∓R±.
Due to the well-known inconsistency of the linearized theory, the solutions (4) do

not obey the gauge condition imposed. However, we have ∇µ h̄±µν = O
(
α2

)
, where

α = ωa/c (we set c = 1), so our calculations are consistent up to order O (α). In
particular, the Ricci tensor does not vanish outside the world line of particle A, but
Rµν = O

(
α2

)
.

Gravitational field given by the advanced solution in (4) does not display usual
peeling properties near future null infinity I +. In particular, the Newman-Penrose
components of the Weyl spinor Ψm, m = 0, . . .4, decay as f (r)r−5+m, where f (r) is
an oscillating function of r.
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The leading term in the asymptotic expansion of Ψ4 for both advanced and re-
tarded fields is

Ψ±
4 =

mα4 γ
2r(1+α sinθ±)

(
10α2 +15α sinθ±− sin3θ±+(2α2 −8)cos2θ±

)
, (6)

where θ+ is r−independent function given implicitly by (cf. (5))

θ+ = α cosθ++α u

while θ− is an oscillating function of r,

θ− = ω(u+ r)+ω
√

a2 + r2 −2ar cosθ−.

Thus, the retarded field decays in a usual way near I + but the advanced field decays
in an oscillatory manner in such a way that the limit of rescaled field does not exist
at I +, see figure 2. Similar behaviour has been observed in the case of helically
symmetric electromagnetic field, see [10].

1.5 π
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4 ∼ f(r)/r

Ψ+
4 ∼ r−1

arctan r

Ψ
4
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)

Fig. 2 The comparison of behaviour of Ψ4 scalar in the neighbourhood of I + in the case of the re-
tarded solution (Ψ+

4 ) and the advanced solution (Ψ−
4 ). The value of Ψ±

4 is plotted against rescaled
coordinate arctanr, so that the point π/2 on horizontal axis corresponds to I +. The retarded solu-
tion Ψ+

4 exhibits usual r−1 decay while the advanced solution oscillates with increasing frequency.

Next we consider the motion of the test particle B in the spacetime with met-
ric (4). For purely retarded (advanced) field of particle A, particle B is expected to
move along the spiral with decreasing (increasing) radius as an inspection of re-
tarded (advanced) effects suggests. This expectation is confirmed by the numerical
solution of geodesic equation the results of which are shown in figure 3. In order
to achieve a circular motion of particle B, it is necessary to take the solution in the
time-symmetric form

h̄µν = 1
2

(
h̄+µν + h̄−µν

)
.
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Fig. 3 The motion of test particle B in the field of particle A with mass m= 0.44041 (satisfying the
equilibrium condition for the time-symmetric field) and with velocity α = 0.1. The trajectories are
plotted for purely retarded, purely advanced and for the time-symmetric field produced by particle
A.
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Fig. 4 a) The equilibrium value of the mass of particle A as a function of its velocity for selected
values of radius b along which particle B orbits with velocity αb. b) Comparison with the Newto-
nian value of equilibrium mass for b = 1 when the circular orbits of both particles have the same
radius. The orange region corresponds to the case when |h̄µν |> |ηµν | so that the linearized theory
breaks down.

With this choice, the angular acceleration ϕ̈ becomes zero and the only remaining
condition of equilibrium comes from the radial component of the geodesic equation,
r̈ = 0. For a given velocity, α , of particle A and for a given radius b of the orbit of
particle B, the condition of equilibrium can be solved explicitly with respect to the
mass mA of particle A. In figure 4a) we plot the mass mA = mA(α,b) as a function
of the velocity α for selected values of parameter b (we use units in which a = 1);
in 4b) the relativistic results are compared with the Newtonian results for b = 1.
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Thus, if the mass mA(α ,b) is chosen so as to satisfy the equilibrium condition,
r̈ = 0, particle B will move along the circle of radius b with the velocity αb in the
(time-symmetric) field of particle B.

A complete discussion of the equilibrium of a binary system on circular orbits
will be given in [11].
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5. J. Bičák, M. Scholtz, P. Tod, On asymptotically flat solutions of Einstein’s equations periodic
in time: I. Vacuum and electrovacuum solutions, Classical and Quantum Gravity 27(5), 055007
(2010)
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