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Abstract Small deformations of marginally (outer) trapped surfaces are considered
by using their stability operator. In the case of spherical symmetry, one can use these
deformations on any marginally trapped round sphere to prove several interesting
results. The concept of ‘core’ of a black hole is introduced: it is a minimal region
that one should remove from the spacetime in order to get rid of all possible closed
trapped surfaces. In spherical symmetry one can prove that the spherical marginally
trapped tube is the boundary of a core. By using a novel formula for the principal
eigenvalue of the stability operator, I will argue how to pursue similar results in
general black-hole spacetimes.

1 Introduction: basic concepts and notation

Let S denote a closed marginally outer trapped surface (MOTS) in the spacetime
(V ,g). This means that the outer null expansion vanishes θk = 0, where the two
future-pointing null vector fields orthogonal to S are denoted by ℓ and k, the latter is
declared to be outer, and we set ℓµ kµ =−1 as a convenient normalization. If in ad-
dition the other null expansion is non-positive (θℓ ≤ 0), then S is called a marginally
trapped surface (MTS). I will also use the concept of outer trapped surface (OTS)
when just θk < 0 and of future trapped surface (TS) if both expansions are negative:
θk < 0 and θℓ < 0. A hypersurface foliated by M(O)TS is called a marginally (outer)
trapped tube, abbreviated to M(O)TT. For further explanations check [1, 2, 3, 4, 5].
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Fı́sica Teórica, Universidad del Paı́s Vasco, Apartado 644, 48080 Bilbao, Spain
e-mail: josemm.senovilla@ehu.es

1

josemm.senovilla@ehu.es
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1.1 Stability operator for MOTS

As proven in [6, 7], the variation of the vanishing expansion δ f nθk along any normal
direction f n such that kµ nµ = 1 reads

δ f nθk =−∆S f +2sB∇B f + f
(

KS − sBsB +∇BsB − Gµν kµℓν ∣∣
S −

nρ nρ

2
W
)

(1)

where KS is the Gaussian curvature on S, ∆S its Laplacian, Gµν the Einstein tensor,
∇ the covariant derivative on S, sB = kµ eσ

B ∇σ ℓ
ρ (with eB the tangent vector fields

on S), and
W ≡ Gµν kµ kν ∣∣

S +σ2

with σ2 the shear scalar of k at S. Obviously W ≥ 0 whenever Gµν kµ kν ∣∣
S ≥ 0 (for

instance if the null convergence condition holds [8]). Under this hypothesis, W = 0
can only happen if Gµν kµ kν ∣∣

S = σ2 = 0. This leads to Isolated Horizons [2], and I
shall assume W > 0 throughout.

Note that the direction n is selected by fixing its norm:

n =−ℓ+
nµ nµ

2
k (2)

and observe also that the causal character of n is totally unrestricted.
The righthand side in formula (1) defines a differential operator Ln acting (lin-

early) on the function f : δ f nθk ≡ Ln f . Ln is an elliptic operator on S, called the
stability operator for the MOTS S in the normal direction n. Ln is not self-adjoint in
general, however it has a real principal eigenvalue λn, and the corresponding (real)
eigenfunction ϕn can be chosen to be positive on S [6, 7]. The (strict) stability of
the MOTS S is ruled by the (positivity) non-negativity of the principal eigenvalue
λn [6, 7].

2 Spherically symmetric spacetimes

In advanced coordinates, spherically symmetric spacetimes have the line-element

ds2 =−e2α
(

1− 2m
r

)
dv2 +2eα dvdr+ r2dΩ 2 .

where α and m are functions of v and r. For each round sphere defined by
{r,v}=consts., its future null normals are

ℓ=−e−α ∂r, k = ∂v +
1
2

(
1− 2m

r

)
eα ∂r

so that their null expansions are:
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θ sph
k =

eα

r

(
1− 2m

r

)
, θ sph

ℓ =−2e−α

r
.

The set A3H : r−2m(r,v) = 0 (⇔ θ sph
k = 0) is an MTT. A3H is actually the only

spherically symmetric MTT : the only spherically symmetric hypersurface foliated
by MTSs —be they round spheres or not [9].

The round spheres are untrapped if r > 2m, and trapped if r < 2m. One can further
prove [9] that any closed trapped surface cannot be fully contained in a region with
r ≥ 2m, so that all of them must intersect the region {r < 2m}. However, how much
must a TS penetrate into {r < 2m}?

Let ς ⊂ A3H be any MT round sphere (i.e., θ sph
k = 0) defined by r = rς =const.

The variation δ f nθ sph
k along normal directions simplifies drastically in this case,

because σ2 = 0 (k is shear-free ) and sB = 0. In other words, most of the terms in
the variation formula vanish and the variation simplifies to

δ f nθ sph
k =−∆ς f + f

(
1
r2

ς
−Gµν kµℓν − 1

2
nρ nρ Gµν kµ kν

)

Selecting f =constant, the vector n such that the expression enclosed in brackets
vanishes produces no variation on θ sph

k , meaning that n is tangent to the A3H simply
leading to other marginally trapped round spheres on A3H. Let us call such a vec-
tor field m, so that m =−ℓ+

mµ mµ

2 k with 1
r2
ς
− Gµν kµℓν ∣∣

ς −
mρ mρ

2 Gµν kµ kν
∣∣∣
ς
= 0

characterizes A3H.
Consider now the parts of A3H with Gµν kµ kν > 0 (i.e. W > 0). From the proper-

ties of m one deduces that the perturbation along f n will enter into the region with
trapped round spheres (that is, {r < 2m}) at points with f (nµ nµ −mµ mµ)> 0. Note
that

(Gρσ kρ kσ |ς ) f (nµ nµ −mµ mµ) =−2(∆ς f +δ f nθ sph
k ). (3)

In order to construct examples of TSs which lie partly in {r > 2m}, consider the case
nµ nµ −mµ mµ > 0. For this choice the deformed surface enters the region {r < 2m}
at points with f > 0. Setting f ≡ a0 + f̃ for some as yet undetermined function f̃
and a constant a0, Eq.(3) can be split into two parts

(Gρσ kρ kσ |ς )a0(nµ nµ −mµ mµ)+2δ f nθ sph
k = 0,

1
2
(Gρσ kρ kσ |ς )(nµ nµ −mµ mµ) =−

∆ς f̃
f̃

> 0.

By our assumptions the first of these implies that δ f nθ sph
k < 0 if a0 > 0, so that the

deformed surface will be trapped. The second, in turn, is a mild restriction on the
function f̃ . A simple solution is to choose f̃ to be an eigenfunction of the Lapla-
cian ∆ς , say f̃ = clPl for a fixed l ∈ N and constant cl , where Pl are the Legendre
polynomials.
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Even more interestingly, we are ready to answer the question of how small the
fraction of any closed TS that extends outside {r < 2m} can be made. The aim is to

produce a C2 function f̃ defined on the sphere (i) obeying the inequality −
∆ς f̃

f̃
> 0,

and (ii) positive only in a region that we can make arbitrarily small. By choosing
a sufficiently small constant a0 requirement (ii) implies that the part of the surface
extending outside {r > 2m} can be made arbitrarily small. To find f̃ explicitly, in-
troduce stereographic coordinates {ρ,φ} on the sphere, so that the Laplacian takes

the form ∆ς = Ω−1
(

∂ 2
ρ + 1

ρ ∂ρ +
1

ρ2 ∂ 2
φ

)
, Ω =

4r2
ς

(1+ρ2)2 , Then, a solution for f̃ is
the axially symmetric function

f̃ (ρ) =


c1

(
e

1
2a (2a−ρ2)−1

)
ρ2 < 4a

8c1a
e

1
ρ2 − c1(1+ e−1) ρ2 > 4a .

(4)

This function is C2 (and can be further smoothed if necessary), and it is positive
only if ρ2 < 2a, that is on a disk surrounding the origin (the pole) whose size can
be chosen at will. It obeys

−
∆ς f̃

f̃
=


Ω−1

a2
2a−ρ2

1− e−
1

2a (2c−ρ2)
ρ2 < 4a

32aΩ−1

ρ4
ρ2

(e+1)ρ2 −8a
, ρ2 > 4a .

which is always larger than zero. Thus we have proven the following important and
perhaps surprising result [9].

Theorem 1 (Bengtsson & JMMS 2011). In spherically symmetric spacetimes,
there are closed f-trapped surfaces (topological spheres) penetrating both sides of
the (non-isolated part of the) apparent 3-horizon A3H\A3Hiso with arbitrarily small
portions outside the region {r > 2m}.

3 Cores

The (future)-trapped region T of a spacetime is defined as the set of points x ∈ V
such that x lies on a closed (future) TS [9]. This is a space-time concept, not to
be confused with the outer trapped region within spacelike hypersurfaces, which is
defined as the union of the interiors of all (bounding) OTS in the given hypersurface
[6, 10]. I denote by B the boundary of the future trapped region T : B ≡ ∂T .

Closed TSs are clairvoyant, highly non-local objects [2, 9]. They cross MTTs
and even enter flat portions of the space-time [11, 12, 9]. In conjunction with the
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non-uniqueness of MTTs [1, 9], this poses a fundamental puzzle for the physics of
black holes. Although several solutions can be pursued, a popular one is trying to
define a preferred MTT. Hitherto, though, there has been no good definition for that.
We have put forward a novel strategy [9]. The idea is based on the simple question:
what part of the spacetime is absolutely indispensable for the existence of the black
hole?

Definition 1 (Cores of Black Holes). A region Z is called the core of the f-trapped
region T if it is a minimal closed connected set that needs to be removed from the
spacetime in order to get rid of all closed f-trapped surfaces in T , and such that any
point on the boundary ∂Z is connected to B = ∂T in the closure of the remainder.

• Here, “minimal” means that there is no other set Z ′ with the same properties
and properly contained in Z .

• The final technical condition states that the excised space-time (V \Z ,g) has
the property that ∀x ∈ V \Z ∪ ∂Z there is continuous curve γ ⊂ V \Z ∪ ∂Z
joining x and B (γ can have zero length if B∩∂Z ̸= /0). The reason why this is
needed are explained in [9].

In spherically symmetric spacetimes one can prove that the region Z ≡{r ≤ 2m}
is a core [9]. The proof is founded on the previous Theorem 1. It should be observed
that this is an interesting and maybe deep result, for the concept of core is global and
requires full knowledge of the future while A3H is quasi-local. It is thus surprising
that A3H = ∂Z .

Actually, one can further prove that in spherically symmetric spacetimes, Z =
{r ≤ 2m} are the only spherically symmetric cores of T . Therefore, ∂Z = A3H
are the only spherically symmetric boundaries of a core. Nevertheless, there exist
non-spherically symmetric cores of the f-trapped region in spherically symmetric
spacetimes. This implies the non-uniqueness of cores, and of their boundaries [9].
Still, the identified core Z = {r ≤ 2m} might be unique in the sense that its bound-
ary ∂Z = A3H is a MTT: we do not know whether other cores share this property
or not [9].

To study whether or not Theorem 1 can be generalized to general situations,
thereby providing the possibility of selecting a unique MTT as the boundary of a
selected core, consider the family of operators, parameterized by a function z ∈
C∞(S), with a similar structure as that of Ln: Lz f = −∆S f +2sB∇B f + z f . Each Lz
has a principal real eigenvalue λz —which depends on z— and the corresponding
eigenfunction ϕz > 0. For any given z one easily gets∮

S
Lz f =

∮
S

(
2sB∇B f + z f

)
=
∮

S

(
z−2∇BsB

)
f

in particular for the principal eigenfunction

λz

∮
S

ϕz =
∮

S

(
z−2∇BsB

)
ϕz .

This provides
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1. a formula for the principal eigenvalue

λz =

∮
S

(
z−2∇BsB

)
ϕz∮

S ϕz
. (5)

2. bounds for λz

min
S

(
z−2∇BsB

)
≤ λz ≤ max

S

(
z−2∇BsB

)
. (6)

3. and that λz −
(

z−2∇BsB
)

must vanish somewhere on S for all z.

On any MOTS, varying θk = 0 along the direction ϕzn one derives

Lnϕz

ϕz
= λz − z+KS − sBsB +∇BsB − Gµν kµℓν ∣∣

S −
nρ nρ

2
W .

Thus, whenever W ̸= 0 on S, one can choose for any z a variation vector mz =
−ℓ+Mzk such that the righthand side vanishes

Mz =
mρ

z mzρ

2
=

1
W

(
λz − z+KS − sBsB +∇BsB − Gµν kµℓν ∣∣

S

)
(7)

hence δϕzmz θk = 0. Observe that this mz depends on the chosen function z. The
general variation of θk along mz reads

δ f mz θk =−∆S f +2sB∇B f + f (z−λz) = (Lz −λz) f (8)

so that the stability operator Lmz of S along mz is simply Lz−λz which obviously has
a vanishing principal eigenvalue. The directions mz define locally MOTTs including
any given stable MOTS S [6, 7]. These MOTTs will generically be different for
different z. In fact, given that ∀z1,z2 ∈C∞(S), mz1 −mz2 =

1
W (λz1 − z1 −λz2 + z2)k

one can easily prove that

mz1 = mz2 ⇐⇒ z1 − z2 = const.

Now, for any given z rewrite δ f nθk = Ln f using (7) so that

W
2

f
(
nρ nρ −mρ

z mzρ
)
= (Lz −λz) f −δ f nθk (9)

Consider the particular function z = 2∇BsB. This may be the natural general-
ization of the spherically symmetric MTT shown above. Observe that, for such a
choice of z, and letting L ≡ L2∇BsB , its principal eigenvalue (say µ) vanishes, as
follows immediately from either (5) or (6). Moreover,

L f =−∆S f +2∇B( f sB) =−∇B

(
∇B

f −2 f sB
)
.
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so that L is a divergence and thus
∮

S L f = 0, ∀ f . Moreover, (9) reduces to

W
2

f
(
nρ nρ −mρ mρ

)
= L f −δ f nθk (10)

where now the vector m =−ℓ+
mρ mρ

2 k is defined by

mρ mρ

2
=

1
W

(
KS −∇BsB − sBsB − Gµν kµℓν ∣∣

S

)
as follows from (7). For any other direction mz defining a local M(O)TT

W
2
(
mρ

z mzρ −mρ mρ
)
= λz − (z−2∇BsB)

and therefore point (iii) above leads to

Result 1. The local M(O)TT defined by the direction m is such that any other nearby
local M(O)TT must interweave it with non-trivial intersections to both of its sides,
that is to say, the vector mz −m changes causal character on any of its M(O)TSs.

Concerning cores, I try to follow the same steps as in spherical symmetry, and
thus I start with a function f = a0ϕ + f̃ for a constant a0 > 0 and ϕ > 0 is the
principal eigenfunction of L. Then (10) becomes

W
2
(a0ϕ + f̃ )

(
nρ nρ −mρ mρ

)
= L f̃ −δ f nθk

that can be split into two parts:

W
2

a0ϕ
(
nρ nρ −mρ mρ

)
=−δ f nθk (11)

W
2

f̃
(
nρ nρ −mρ mρ

)
= L f̃ (12)

Eq.(11) tells us that δ f nθk < 0 whenever n points “above” m if a0 > 0 is chosen.
Therefore, using (12) the problem one needs to solve can be reformulated as follows:
Is there a function f̃ on S such that (i) L f̃/ f̃ ≥ ε > 0, (ii) f̃ changes sign on S, (iii) f̃
is positive in a region as small as desired? To prove that there are OTSs penetrating
both sides of the MOTT it is enough to comply with points (i) and (ii) only. This
does happen if L has more real eigenvalues, for any real eigenvalue is strictly positive
(as µ = 0), hence the corresponding eigenfunction must change sign on S, because
integration of Lψ = λψ on S implies

∮
ψ = 0. However, even if there are no other

real eigenvalues the result might still hold in general. In any case, the above leads to
the analysis of the condition L f̃/ f̃ > 0 for functions f̃ .
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