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Abstract The twin paradox of special relativity formulated in the geometrical set-
ting of general relativity gives rise to the problem of determining the longest timelike
curve between a given pair of points. As a first step one solves the local problem
for a bundle of nearby curves (geodesics) in terms of Jacobi fields and conjugate
points. These provide important information about geometrical properties of the
given spacetime. The second step, to determine the globally maximal length curve
in the set of all timelike curves with common endpoints, is harder and may be effec-
tively performed only in spacetimes with high symmetries.

1 Formulation of the problem

The twin paradox in special relativity may be considered on two levels of compre-
hending. The first, lowest level of understanding deals with the problem of why the
effect is asymmetric at all: why one twin turns out younger than the other whereas
the time dilation effect for two clocks in uniform relative motion is actually sym-
metric. Most textbooks on special relativity explain the problem on this level by
discussing the simplest (traditional) version of the paradox in which one twin re-
mains all the time at rest in one inertial frame and the other uniformly moves to a
distant star, then suddenly turns back and returns again at a constant velocity. By
considering the hyperplanes of simultaneity of the astronaut during his travel back
and forth one shows that the twin at rest must be older at the reunion than the as-
tronaut; however such calculation can be effectively performed only in this simplest
case of twins’ motions. In consequence it does not provide a deeper understand-
ing of the paradox. In fact, what does occur if both the twins move at non-uniform
velocities?
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The generic form of the paradox may be elucidated only on the second level
which requires to go beyond the elementary algebra of the special Lorentz trans-
formation. The solution is well known to the expert on relativity (though it is rather
infrequently stressed in textbooks) and is based on the identification of physical time
measured by a moving clock = proper time = length of the moving clock’s worldline.
The problem is then reduced to a purely geometrical one of calculating worldline
lengths in Minkowski spacetime. Let the twins A and B travel at arbitrary velocities
measured in some inertial frame from point (event) P to Q, then their common age
at P will increase at Q by
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respectively. Here t1 and t2 are the time coordinates of the points in the inertial
frame. In the geometrical setting the effect of different ageing of the twins is obvi-
ous. Coming back to the simplest version of the paradox, what is less obvious and
is rather surprising at first glance as it stands in contradiction to our experience in
Euclidean geometry, is that the twin at rest gets older than the twin moving on a
curved (accelerated) worldline. This is due to the reverse triangle inequality which
gives rise to the theorem that in Minkowski spacetime the timelike straight line is
the longest timelike curve between any pair of its points. Yet a curved timelike line
joining two points may be arbitrarily small and it makes no sense to ask of how
to move from P to (chronologically related) Q in order to use as little as possible
of proper time —the interval s(P,Q) may be arbitrarily close to zero. The properly
posed problem is which timelike worldline from P to Q has the largest length and in
flat spacetime is clear.

The geometrical twin paradox becomes much more interesting in curved space-
times since the variety of possible physically relevant motions is much greater than
in the flat case. Besides comparing lengths of concrete worldlines in a given space-
time one may ask if there are whole classes of worldlines which are longer than
curves in other classes and, first of all, which timelike curves attain the maximal
length. The first question is relevant in static spacetimes: what makes one twin
younger than the other—velocity (with respect to a static observer) or accelera-
tion (acting e.g. on the twin at rest)? Special cases investigated in first works on
the subject do not allow one to infer general statements. For instance, Abramowicz,
Bajtlik and Kluzniak [1], [2] investigated static worldlines and circular geodesics
in Schwarzschild spacetime and concluded that ‘in all situations in which the ab-
solute motion may be defined in terms of some invariant global properties of the
spacetime, the twin who moves faster with respect to the global standard of rest is
younger at the reunion, irrespectively to twins’ accelerations’. This conclusion is,
however, false already in Schwarzschild world since introducing a third twin mov-
ing on a radial timelike geodesic, first upwards and then downwards, one can show
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that his worldline is longer than those of the other twins. Usually in this and many
other spacetimes two points may be connected by different geodesics and a world-
line of the static observer and the multitude of possibilities concerning their lengths
precludes generic conclusions such as that above.

Generically one can only seek for timelike curves having maximal length and
this is the problem we are dealing with here. To the best of our knowledge the first
who gave the correct but imprecise answer to the problem was Feynman (whilst at
Princeton in the 1940): the longest worldline is a timelike geodesic. The answer may
be deduced by analogy with the flat spacetime (geodesics are straight lines), but is
insufficient if there are two or more timelike geodesics with common endpoints, as
in the example above.

The general rigorous solution of the problem is achieved in two steps. The first
step is contained in Hawking and Ellis’ book [3] and we summarize it here in the
form of three propositions.

Proposition 1. 1 In any convex normal neighbourhood, if p and q can be joined by a
timelike curve, then the unique timelike geodesic connecting them has length strictly
greater than that of any other piecewise smooth timelike curve between the points.

The existence of a convex normal neighbourhood is crucial here. If q does not lie in
this neighbourhood of p then there are several timelike geodesics from p to q with
different lengths, as in the Schwarzschild case outside the event horizon. But how
to recognize whether given p and q can be connected by a unique timelike geodesic
(i. e. that their neighbourhood is normal)? The first step described in [3] deals with
bundles of nearby geodesics. Here the key notion is that of conjugate points.

Let Zµ(s) be a geodesic deviation vector field on a timelike geodesic γ with
tangent unit vector uα(s). If Zµ is chosen orthogonal to uµ , then it satisfies the
geodesic deviation equation

D2

ds2 Zµ = Rµ
αβν uα uβ Zν .

Any solution Zµ of the equation is called a Jacobi field on γ . Points p and q on γ are
said to be conjugate if there is Jacobi field Zµ ̸= 0 such that Zµ(q) = 0 iff Zµ(p) = 0.
If p and q are conjugate then one or more nearby geodesics intersect γ at p and q
(or pass infinitesimally close to γ at these points) and they have different lengths.
More precisely, if a geodesic γ joining points p1 and p2 has a point q conjugate to
p1 belonging to the segment p1 p2, then there exists a nearby timelike curve (not
necessarily a geodesic) with endpoints p1 and p2 which is longer than γ . If there are
no conjugate points, γ is the longest curve in the set of nearby curves.

Proposition 2. 2 A timelike geodesic attains the local maximum of length (i. e. among
nearby curves) from p1 to p2 iff there is no point conjugate to p1 on the segment
p1 p2.

1 Proposition 4.5.3 in [3]
2 Proposition 4.5.8 in [3]
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The very existence of conjugate points (but not their localization) is determined
by

Proposition 3. 3 If Rαβ uα uβ ≥ 0 on a timelike geodesic γ and if the tidal force
Rµανβ uα uβ ̸= 0 at some point p0 on γ , there will be a pair of conjugate points
somewhere on γ (providing that the geodesic can be extended sufficiently far).

Returning to the twin paradox one concludes that the problem of which twin will
be older at the reunion has a general (i. e. without computing the lengths of con-
crete worldlines) solution only if one of the twins’ worldlines is a timelike geodesic
free of conjugate points. From this conclusion one gets, e. g. that in Schwarzschild
spacetime the radial geodesic (flight up and down), being free of conjugate points,
is longer than the circular geodesic with the same endpoints since the latter has a
conjugate point in the middle of its segment; this outcome is hard to derive from the
analytic expressions for their lengths and and the two expressions can be compared
only numerically.

This is, however, not the full solution of the problem we are interested in. Con-
jugate points allow one to find locally maximal curves but not the globally maxi-
mal ones. We are now entering the second step in solving the problem. The radial
geodesic in Schwarzschild spacetime is longest in the bundle of nearby curves and
is longer than the distant circular geodesic, but a priori there might exist a timelike
geodesic, distant from the radial one and longer than that. We are looking for glob-
ally maximal length geodesics, i. e. curves whose length between their points attains
maximal value. This maximal length is named Lorentzian distance function d(p,q).
Properties of maximal timelike geodesics, or curves realizing the distance function,
are investigated in global Lorentzian geometry [4]. In [5] we quote six theorems
from the book [4] which in our opinion are most relevant for searching globally
maximal geodesics. Without glancing at them one may expect that these are math-
ematical ’theorems on existence’ stating the presence of some global properties of
geodesics if some global conditions hold. They cannot be and are not ’construc-
tive’. In fact, in the search for locally maximal curves one investigates a bundle of
close geodesics and their properties may be expressed in terms of the geodesic de-
viation equation. Yet in the problem of global maximality one compares the lengths
of curves which besides their common endpoints are distant from each other. This
means that there is no local analytic tool such as a differential equation (which
expresses local properties of a mathematical object) allowing one to seek for the
globally maximal curve. To find out which curve has the length equal to the dis-
tance function one has to study all timelike curves joining the given pair of points.
In other terms there is no effective algorithmic procedure which provides in a finite
number of steps the maximal (unique or not) timelike curve for the given endpoints.
The search is not hopeless if one considers a spacetime with global symmetries
(isometries). At least in the case of static spherically symmetric spacetimes it is
possible to show that some class of timelike geodesics (the radial ones) consists of
curves which are maximal on some segments.

3 Proposition 4.4.2 in [3]
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In this conference contribution we wish to make only a general introduction to
the problem of maximal curves in Lorentzian spacetimes, which has evolved from
the twin paradox in special relativity. Investigations of locally and globally maxi-
mal timelike curves are still at an initial stage and some results have been found
in the simplest spacetimes of general relativity. These results reveal a multitude of
possibilities concerning Jacobi fields and conjugate points. For details we refer the
interested reader to author’s recent work [6] and to his forthcoming papers.

References
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