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Abstract The Inflationary account for the emerging of the seeds of cosmic structure
from quantum fluctuations is a central part of our current views of cosmology. It
is, on the one hand, extremely successful at the phenomenological level, and yet it
retains an aspect that is generally regarded as controversial: The exact mechanism by
which quantum fluctuations transmute into actual inhomogeneities. We will review
the considerations that lead us to conclude that the fully satisfactory resolution of the
issue requires novel physics and we will discuss an option we have been considering
in this regard.

1 Introduction

This conference commemorates the time spent by Einstein in Prague, which was
instrumental in his development of General Relativity, a subject which has been the
focus of the majority of the other presentations. I will be touching on the other great
question that preoccupied Einstein at the time: Quantum Theory. We note that, the
subject of this manuscript; inflation, represents the only generally accepted example
of an instance in which General Relativity, Quantum Theory and observations come
together. It is, therefore, quite remarkable that it is precisely here where we must
confront the conceptual difficulties of quantum theory itself. In fact the ideas I will
be exploring are strongly motivated by the arguments that R. Penrose [1] and L.
Diósi [2] have been advancing regarding the collapse of the wave function as a
dynamical process to be incorporated in a modified Schrödinger’s equation, and the
role that gravity might play in this.

In the present manuscript, and in contrast to other works [3, 4] where I have
focused on the difficulties or shortcomings of the postures advocated in standard
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treatments of the emergence of the seeds of cosmic structure, I will be focusing on
aspects that would be encountered independently of the conceptual approach one
takes, as long as one attempts to provide a specific characterization of the various
stages in the cosmological evolution. Moreover, I will show the connection, some-
times not easily recognized, between the actual treatment we have been using, and
other approaches to deal with the characterization of space-time when the matter
content is taken to be described in terms of quantum fields.

2 The general setting

The first simplification we will be using is justified by the fact that, despite the many
important and sometimes spectacular advances, at this point in time we still do not
have a fully workable and completely satisfactory theory of quantum gravity. For
instance, we do not know how to construct a quantum state representing Minkowski
space-time. In fact, it is well known that any canonical approach to quantum gravity
inevitably leads to a timeless theory where the recovery of fully covariant space-
time notions becomes, by itself, a nontrivial task. Those approaches usually require
selecting a physical observable to play the role of a clock, and while this can be
achieved quite satisfactorily in certain cases, the resolution of the problem in full
generality is not available.

Therefore, although we will adhere to the view that the fundamental description
of everything, including space-time, ought to be always quantum mechanical, we
will be using a classical description of the space-time metric.

In general, we will view the so called classical regimes in connection with some
physical variable as those where such quantities can be described to a sufficient ac-
curacy by their classical counterparts representing the corresponding quantum ex-
pectation values. The paradigmatic example here is provided by the coherent states
of a harmonic oscillator which correspond to minimal wave-packets with expecta-
tion values of position and momentum following the classical equations of motion.
In the specific case of the space-time, we will accept that, at the fundamental level
it would have a quantum description in terms of some unspecified variables (they
might be those of loop quantum gravy (LQG), the “causal set” approach or the “dy-
namical triangulations” approach, etc) but we will be characterizing them, according
to this view, using effectively classical terms. We might consider such description in
analogy with the hydrodynamical characterization of a fluid: as representing a good
enough description at certain scales, but having a radically different description at
a more fundamental level. Einstein’s equations would correspond to the Navier-
Stokes equations, the space-time metric to the fluid velocity and density fields, and
the atomic and molecular characterization of the matter making the fluid would cor-
respond to the fundamental degrees of freedom of quantum gravity.

According to this view, Einstein’s equations would be of limited validity and
there would be conditions where they will not hold. In fact in such situations one
can expect a more general failure of the characterization of the situation in terms
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of a space-time metric, just as, in the case of a fluid, one might expect not only the
violation of Navier-Stokes equations but also of the hydrodynamic characterization
of matter, when something like a phase transition from liquid to gas is taking place.
There is one example coming from LQG where one faces precisely this kind of
breakdown: It correspond to the situation where a collapsing star forms a black hole
that eventually evaporates completely [5]. In that work it is argued that although the
classical singularity would be resolved in terms of the LQG degrees of freedom, the
region of space-time corresponding to the singularity is characterized, in terms of
the fundamental variables, by a situation that has no metric counterpart.

On the other hand, the situations I want to consider are those that require a full
quantum treatment of the matter fields. For this, we will rely on the standard quan-
tum field theory in curved space-time treatments such as described for instance in
[6]. The setting is therefore that of semiclassical gravity where Einstein’s equations
read:

Gµν = 8πG⟨T̂µν⟩ (1)

and matter is described in terms of states of a quantum field, which, in our case, will
be the scalar field of inflationary cosmology.

The validity of such semiclassical treatment is, as we have indicated, of limited
scope, and would require, among other things, the scalar curvature of space-time
to be small compared to l−2

p (lp is the Planck length). The inflationary regime is
thought to be associated to scales that are way below the Planck mass and thus this
part of the requirement should be easily satisfied in the case we want to consider.

3 The Stern-Gerlach analogy

The general issue we want to consider is the emergence of the seeds of quan-
tum structure from the quantum fluctuations of the inflaton vacuum. The aspect
that will be guiding our inquest is the required change in symmetry between the
conditions characterized by a classical and unperturbed Robertson Walker space-
time, where the inflaton field’s zero mode is slowly rolling down the potential, and
where the other modes are in the the Bunch-Davies vacuum, to a stage characterized
by a slightly perturbed RW space-time containing small anisotropies and inhomo-
geneities, and a quantum state of the inflaton where the expectation value of the
energy momentum tensor has the corresponding anisotropies and inhomogeneities.

The question is how to characterize the evolution in time (because, after all, emer-
gence is a word that has very clear time connotations1), from a situation correspond-
ing to a homogeneous and isotropic (H&I) background and a quantum aspect char-
acterized by a H&I state, to a stage lacking such symmetries. This issue has been
the central focus of the discussion in previous works: Is there a measurement in-
volved? Can we account for it using just decoherence? Should we rely on the many
worlds interpretation (MWI) or must we call upon a novel gravity-induced collapse

1 Something emerges when it is not present at a certain time but it is present at a later time.
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of the wave function following the ideas of Penrose and Diósi? I have extensively
argued that among those the only option is the last one, however, here I will focus
on aspects that should be dealt with, even if one is intent on sticking with some of
the alternative views mentioned above.

In order to clarify the issue, I shall consider a much simpler problem, and point
to the parallels with the inflationary problem, as well as to those aspects where the
analogy breaks down.

Consider a standard Stern-Gerlach experiment: The setting involves an electron
that has been prepared moving along the x axis from the x < 0 region, towards
a magnet placed at the origin of coordinates. The inhomogeneous magnetic field
points along the y axis so that the electron will be diverted towards the +y or −y
directions depending on whether the spin state of the electron is |+⟩ or |−⟩ (we are
taking the basis to be that of eigen-states of the spin along the y axis). If the spin was
prepared initially in the direction +x (eigenstate of the x component of the spin) we
know that there is a 50% probability that the electron will be diverted towards the
+y direction.

Let us imagine for a moment that we do not fully understand the theory, that there
are aspects of the electromagnetic interaction that still elude us (the allegory here
alludes to the quantum theory of gravity of course). Now let us consider the theo-
retical analysis of the said experiment: If we do not invoke any sort of reduction, or
collapse of the wave function, the result of the unitary evolution will be a state that
corresponds to a superposition of the electron going up and the electron going down.
However suppose we want to investigate in depth what happens when the electron
is deflected: Say, we want to understand exactly the details of the momentum trans-
ferred from the magnetic field to the electron. We could, for instance, find that the
momentum transfer has components predominantly in the Y direction (depending
on the deflection, with a sign that depends on the alternative) but is accompanied by
momentum components in the X direction (of a specific and correlated magnitude),
and use this to study the change in the kinetic energy. We can even inquire about
the rate of transfer as the electron moves along the X direction (by considering an
appropriate wave packet characterization of the electron and, say, following the ex-
pectation value of the center of mass). How can we do that if we maintain that the
electron is, even after the passing through the magnet, in the superposition of mov-
ing up and moving down? In that case, if we try to compute the momentum transfer
from the EM field to the electron we will find that it is zero.

Suppose we want to further inquire about the back reaction of the electron on the
EM field. It would seem very difficult to do so without incorporating the collapse.
Note that, if we are so inclined, we could even adopt the many worlds interpreta-
tion (MWI) but still concern ourselves with one of the realizations of the electron’s
path, that which corresponds to “our branch of the many worlds”. Now, suppose
we wanted to do this before we had a fully workable quantum theory of the elec-
tromagnetic field, but instead we had very refined experimental data about the back
reaction acting on the magnet as a result of the electron scattering. Could we not
hope to investigate some of the properties of the quantum electromagnetic field us-
ing a combination of the data, some rough classical characterization of the EM field,
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taken to be only valid to a certain degree (evidently not in the full description of the
back reaction, but, perhaps, as it applies to the “after” and “before” state of the EM
field)? Could we hope to do that if we had never even been able to consider the
back reaction, as a result of our failure to acknowledge that the full superposition
(in which the expectation value of the momentum transfer was zero) was not the
appropriate description? It seems we could start considering something like the dis-
persion of the momentum transfer but, that would be very difficult due to our lacking
of a workable quantum theory of Maxwell’s field.

The situation we face regarding the problem of the emergence of seeds of struc-
ture in inflationary cosmology is, in a sense, analogous to the one above: the sym-
metry of homogeneity and isotropy in the cosmological case has in the example
above a simple counterpart: the symmetry y →−y.

The most important aspect where the analogy breaks down is the fact that in
contrast with the Stern-Gerlach example above, in cosmology we can not call upon
external observers, and, what is even worse, the emergence of structure, which is
what we want to explain, is a prerequisite for the subsequent emergence of anything
one can consider as an “observer”.

The issue of symmetry is brought in because, as we all know, when dealing with
complicated problems, symmetry arguments are often one of the few paths available
and arrive to clear and definite conclusions, and thus they provide the only hope to
make progress.

4 A Word About Collapse Theories

The idea of modifying quantum theory by adding to it a mechanism for explicit
dynamical reduction has a long history The existing work in this direction includes :
GRW [7], Pearle [8], Diósi [2], Penrose [1], Bassi [9] (where its worthwhile noting
some recent advances towards making collapse theories compatible with special
relativity [10, 11]), and recently Weinberg [12].

As an example, let us consider the modification of the Schrödinger equation
that underlies the Continuous Spontaneous Localization (CSL) theory, developed
in [13]:

d|ψ⟩=−{[iĤ − λ 2

2
(Â−⟨ψ|Â|ψ⟩)2]dt +λ (Â−⟨ψ|Â|ψ⟩)dWt}|ψ⟩, (2)

where Wt is a Wiener process (W 2
t = t).

Its merit is that it includes the unitary Schrödinger evolution U and the nonde-
terministic, non-unitary reduction process R (for measuring Â) in a unified fashion.
The proposal for particles assumes that the fundamental localization takes place in
position or configuration space, thus Â = X̂. The value of the parameter λ is taken
to be small enough so that particle physics is not strongly affected, but large enough
so that it leads to a rapid localization of macroscopic objects.
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In the reminder of this manuscript, we will not follow any of those proposals,
but take from them only some essential aspects. What we want to do, at this point,
is present a generic formalism capable of treating the cosmological problem that
motivates this line of research, within the context of semiclassical gravity with a
full quantum treatment for the inflaton field (including its zero mode), incorporating
a collapse process. On the other hand, we should mention the work [14], where
precisely a version of CSL has been adopted to this problem, as well as an ongoing
research project by our group in which a different implementation of those ideas is
studied [15].

5 The Self Consistent Semiclassical Configurations

In this section, we will describe the precise formalism that we consider as appro-
priate to characterize, at the desired level, the situation we will be studying. As we
said, the setting is that of semiclassical gravity and quantum field theory in curved
space-time. Such setting is often considered as a context in which the space time
is fixed and given, and where the quantum fields can, at most, produce some small
modifications which are referred to as the back reaction of space-time to the effects
of the quantum fields. That point of view will not be sufficient for our purposes, as
we want to be able to, in principle, treat the case where the only matter content is
represented by the inflaton field and where the space-time is fundamentally tied to
its properties: Inflation is supposed to be the result of the non vanishing value of the
inflaton potential. In such situation the field is generically treated at a classical level,
and only its perturbations are quantized. We want to be able to explore the setting in
which the classical quantum partition in the description is, in principle, not tied to a
perturbative treatment2.

We have formalized these ideas in [16] based on the notion of the “Self Consis-
tent Semiclassical Configurations” (SSC) provided by the following,

Definition 1. The set gµν(x), φ̂(x), π̂(x),Ĥ , |ξ ⟩ ∈ Ĥ represents a SSC if and only
if φ̂(x) and π̂(x) correspond to quantum field operators over the Hilbert space and
Ĥ is constructed acceding to the standard QFT over the curved space-time with
metric gµν(x) (as described in, say [6]), and the state |ξ ⟩ in Ĥ is such that:

Gµν [g(x)] = 8πG⟨ξ |T̂µν [g(x), φ̂(x), π̂(x)]|ξ ⟩ (3)

for all the points x in the space-time manifold.

2 The point is that a perturbative treatment should be considered as an approximation to something
else, and it is very useful when one can establish explicitly what is that which the perturbative
treatment is approximately trying to describe.
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It is, in a sense, the GR version of Schrödinger-Newton equation [17] where one
considers the Schrödinger equation for the wave function ψ of a particle subject to
the gravitational interaction described in terms of a Newtonian potential ΦN :

i
∂ψ
∂ t

=− 1
2M

∇2ψ +MΦNψ, (4)

where the wave function of the particle its taken as a gravitating mass distribution,
therefore

∇2ΦN = 4πGM|ψ|2. (5)

The non linearity implied by these equations is known to lead to interesting and
suggestive behavior [18].

6 Collapse

The point, however, is that this setting will not, by itself, be enough to describe the
situations involving a collapse of the wave function. As we have argued, in order to
be able to describe the evolution in time from an early inflationary era characterized
by an H&I situation to a later regime characterized by a situation that is not H&I, we
will be relying on the collapse of the wave function, represented here in the simplest
fashion: an instantaneous jump in the state of the quantum field.

The collapse process reflecting some remanent signature from a fundamental
quantum gravity regime (as suggested by Penrose and Doisi’s ideas) will be de-
scribed here as an instantaneous jump: i.e., besides the standard smooth unitary evo-
lution of a quantum field characterized by the Schrödinger’s dynamics (the so called
U process, which in the QFT theory setting we are considering here, is usually incor-
porated using the “Heisenberg picture”), there are, sometimes, spontaneous jumps
in the quantum state:

...|0⟩k1 ⊗|0⟩k2 ⊗|0⟩k3 ⊗ ....→ ....|Ξ⟩k1 ⊗|0⟩k2 ⊗|0⟩k3 ⊗ .... (6)

We might view the collapse as triggered by an aspect of the dynamics which is not
susceptible of description in standard Hamiltonian terms, but which is nonetheless
taken as an interaction treated here in the interaction picture. That is, we take the
Hamiltonian part of the evolution and absorb it in the quantum field operators as in
the standard Heisenberg picture, but we leave the reminder, viewed as an interaction,
to be treated using the interaction picture.
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7 Relation to other approaches

This setting might seem very novel and unusual, however, the fact is that it can be
seen to lie, unsuspectedly, underneath some more conventional approaches, such as
the stochastic gravity formalism [19].

In order to see this, let us consider one of such jumps or collapses: |ψ(t)⟩ =
θ(t0 − t)|0⟩+θ(t − t0)|ξ ⟩, and its gravitational effects.

Now Einstein’s semiclassical equations read:

Gµν = 8πG⟨ψ(t)|T̂µν |ψ(t)⟩ (7)

which we can write as:

Gµν = 8πG⟨0|T̂µν |0⟩+8πGξµν , (8)

where
ξµν ≡ θ(t − t0)(⟨ξ |T̂µν |ξ ⟩−⟨0|T̂µν |0⟩) (9)

might be seen as corresponding to an individual stochastic step. Stochastic gravity
might correspond to a continuous version of dynamical collapses (like CSL).

Note: the equation can not be valid on the jump, but might well be so before and
after. We take the view, motivated in part by the black hole singularity example in
LQG, that during the jump the degrees of freedom of the quantum space-time are
excited. In the fluid analogy, this might be thought as corresponding to some chem-
ical reaction or phase transition occurring in the fluid. It is clear that during such
processes, which generally involve energy flux between the atomic or molecular de-
grees of freedom to the macroscopic degrees of freedom characterized in terms of
the fluid variables, the Navier-Stokes equations can not be valid. If, however, the
phase transition takes place rapidly one can assume such equation to be valid before
and after the chemical reaction or phase transition.

Next, consider the inflationary problem at hand, and assume one adopts one of
the more popular postures regarding the emergence of classicality, or more precisely
the generation of primordial inhomogeneities and anisotropies. These include for in-
stance i) the notion that after a given mode exits the horizon (its physical wavelength
as seen in a co-moving frame, becomes larger than the Hubble radius) the fluctuation
corresponding to that mode becomes classical, or ii) that, due to some decoherence
effect, we can at a certain point adopt the Many Worlds Interpretation of quantum
theory, and consider the state of the quantum field as characterizing not our uni-
verse, but an ensemble of universes of which ours is just a typical element. Now, let
us say that in case i) we want to produce a description (even an approximate one)
of our universe concentrating, for simplicity, on a single mode, but we want a de-
scription that is valid before the mode exits the horizon and afterwards. In that case,
the approach I will present, seems to be the best one can do, as long as we do not
have a workable theory of quantum gravity which allows us to characterize space-
time in a full quantum language. In case ii) we might also be interested in putting
together the characterization of our space-time before the decoherence is taken to
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be effective and the one describing the particular branch of the many worlds, or the
particular element of the enabled universes in which we happen to find ourselves.
Again in that situation the analysis I will present would offer perhaps the furthest
one can go in achieving the said goal, given the present stage of the development of
candidate theories of quantum gravity.

8 Application to Inflation

As we discussed in the previous sections, space-time will be treated as classical. In
the case of interest, working in a specific gauge, and ignoring the tensor perturba-
tions the metric is taken as:

ds2 = a2(η)
[
−(1+2ψ)dη2 +(1−2ψ)δi jdxidx j] ,ψ(η ,x)≪ 1 (10)

with a(η) the scale factor and ψ(η ,x) representing (to the extent that it is nonzero)
a possible slight departure from homogeneity and isotropy of the space-time, the
so called Newtonian potential. We will use the notation H ≡ a−1da/dη (not to be
confused with the hatted quantity that stands for a Hilbert space).

Also, as explained before, the scalar field, which we take here to be described by
the simple action S = 1/2

∫
d4x(∇µ ϕ∇µ ϕ −m2ϕ 2), including the zero mode (which

in standard discussions of inflation is usually treated at a classical level) is treated
here using quantum field theory on curved space times, so we write:

ϕ̂(x) = ∑
α

(
âα uα(x)+ â†

α u∗α(x)
)
, (11)

with the functions uα(x) a complete set of normal modes, orthonormal w.r.t. the
symplectic product:

((ϕ1,π1),(ϕ2,π2))Sympl ≡−i
∫

Σ
[ϕ1π∗

2 −π1ϕ ∗
2 ] d3x. (12)

For simplicity, we set the problem in a co-moving coordinate box of size L.
Finally, one constructs the state such that Einstein semiclassical equations hold.

This is nontrivial, but ts is a well defined problem. In what follows, the discussion
will omit some complications that are required for the rigorous analysis and dis-
cussed in detail in [16], but which are not central to the issue at hand. They have to
do with the hermiticity of the operators that play a central role in the collapse, an
issue that will be overlooked here to avoid nonessential complications in the presen-
tation.



10 Daniel Sudarsky

The Homogeneous and Isotropic case: SSC I

We assume an almost de Sitter slow-roll expansion characterized by the parameters
H(I)

0 and ε(I) (using standard inflationary notation [20]).
The quantum field theory construction requires a complete set of modes, which

we take to be of the form u(I)
k (x) = v(I)

k (η)eik·x/L3/2.
The field equation of motion then leads to:

v̈(I)
k +2H (I)v̇(I)

k +
(

k2 +a2(I)m2
)

v(I)
k = 0, (13)

for modes, which must be normalized according to

v(I)
k v̇(I)∗

k − v̇(I)
k v(I)∗

k = ih̄a−2(I). (14)

For the modes with k ̸= 0, the most general solution to the evolution equation
is a linear combination of the functions: η3/2H(1)

ν (−kη) and η3/2H(2)
ν (−kη), (the

Hankel functions of first and second kind), with (ν (I))2 = (9/4)− (m/H(I)
0 )2. How-

ever, these functions are not well behaved at the origin and thus the zero mode is not
included. For k = 0 the general solution to the equation is a linear combination of
the functions η(3−2ν)/2 and η(3+2ν)/2. The choice can be made arbitrarily provided
it has a positive symplectic norm. We take:

v(I)
0 (η) =

√
h̄

H(I)
0

[
1− i

6

(
−H(I)

0 η
)3
](

−H(I)
0 η
)m2/3H2(I)

0
. (15)

For the k ̸= 0 modes, we make the Bunch-Davies choice: i.e., we use modes that,
in the asymptotic past, behave as purely “positive frequency solutions”. This fixes

Ĥ (I) as the Fock space of the SSC-I construction.
To complete the SSC construction we still need to find a state |ξ (I)⟩ ∈ Ĥ (I)

such that its expectation value for the energy-momentum tensor leads to the de-
sired nearly de Sitter expansion. Consider a state in which all the modes with k ̸= 0
are in their vacuum state, while the zero mode is excited in a coherent state:

|ξ (I)⟩= ceξ (I)
0 â(I)†

0 |0(I)⟩, (16)

Using Einstein’s equations for the metric with a vanishing Newtonian potential,
and the fact that for a coherent state we have

⟨ξ (I)| : (ϕ (I))2 : |ξ (I)⟩= (⟨ξ (I)|(ϕ (I))|ξ (I)⟩)2, (17)

one finds that the expectation value of the field should satisfy:

⟨ξ (I)|(ϕ (I))|ξ (I)⟩ ∝ η
√

ε (I)m2/3(H(I)
0 )2

. (18)

On the other hand taking the parameter ξ (I)
0 as real we find:
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⟨ξ (I)|ϕ̂ (I)(x)|ξ (I)⟩=
2ξ (I)

0

L3/2

√
h̄

H(I)
0

(
−H(I)

0 η
)m2/3H2(I)

0
. (19)

That is, we will have compatibility if we set:

ε (I) =
m2

3H2(I)
0

, H(I)
0 = 16πGh̄ε (I) (ξ

(I)
0 )2

L3 . (20)

This completes the explicit SSC -I construction representing an H&I state and space-
time metric, corresponding to the early stages of inflation.

Next, we want to consider a situation where the universe is no longer H&I but
has been excited in the k0 mode: We will denote this new SSC by SSC-II.

A simple inhomogeneous and anisotropic case: SSC II

It will be characterized by the parameters H(II)
0 and ε (II) (which might, in principle,

differ slightly from those corresponding to the SSC-I discussed in the previous
section), and a Newtonian potential described by an (in principle) arbitrary function
ψ(η ,x) = εP(η)Cos(k0.x), where P(η) is an (in principle) arbitrary function, and
ε is a small (expansion) parameter (please do not confuse with ε).

The strategy: We first construct the “generic” Hilbert space assuming that P(η)
is given. Then, make an “educated” guess for the form of the quantum state, and by
requiring that our construction be a SSC we will find what the function P(η) ought
to be.

The first step is to find the complete set of modes, which we write as:

u(II)
k (x) =

1
L3/2 [v

(II)0
k (η)eik·x + ε(δv(II)−

k (η)ei(k−k0)·x +δv(II)+
k (η)ei(k+k0)·x)]

(21)
to the zeroth order in ε , the evolution equation is given by

v̈(II)0
k +2H (II)v̇(II)0

k +
(

k2 +a2(II)m2
)

v(II)0
k = 0, (22)

with normalization condition

v(II)0
k v̇(II)0∗

k − v̇(II)0
k v(II)0∗

k = ih̄a−2(I), (23)

which is identical to the construction we have already done. Thus, we take the
v(II)0

k (η) as before.
At first order in ε the corresponding evolution equation takes the form

δ v̈(II)±
k +2H (II)δ v̇(II)±

k +
[
(k±k0)

2 +a2(II)m2
]

δv(II)±
k =Fk(η) (24)

where
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Fk(η)≡ 4v̇(II)0
k Ṗ−2

(
2k2 +a2(II)m2

)
v(II)0

k P. (25)

The normalization condition (needed only at one time) is:

v̇(II)0∗
k+k0

δv(II)+
k − v(II)0∗

k+k0
δ v̇(II)+

k − v̇(II)0
k δv(II)−∗

k+k0
+ v(II)0

k δ v̇(II)−∗
k+k0

(26)

= 4
(

v(II)0
k v̇(II)0∗

k+k0
− v̇(II)0

k v(II)0∗
k+k0

)
P. (27)

If we had P(η) and the initial conditions for the δvk, the equation above would
define a unique solution. As we said, we will assume that P(η) is given and take the
initial conditions to be

δ v̇(II)±
k (ηc) = 0, δv(II)±

k (ηc) = 4v(II)0
k (ηc)P(ηc). (28)

This finishes the generic (i.e. for arbitrary P) construction of Ĥ (II).
Next we need to find the state |ζ (II)⟩ ∈ Ĥ (II) that completes the SSC-II construc-

tion. The symmetries of the space-time led us to consider the “ansatz”:

|ζ (II)⟩= . . . |ζ (II)
−2k0

⟩⊗ |ζ (II)
−k0

⟩⊗ |ζ (II)
0 ⟩⊗ |ζ (II)

k0
⟩⊗ |ζ (II)

2k0
⟩ . . .. (29)

The vector in Fock space is characterized by the specific modes that are excited (all
other modes are assumed to be in the vacuum of the corresponding oscillator) and
the parameters ζ (II)

k indicate the coherent state for the mode k.
The expectation value of the field operator in such a state is given by

ϕ (II)
ζ (x) = ϕ (II)

ζ ,0(η)+
(

δϕ (II)
ζ ,k0

(η)eik0·x
)
+
(

δϕ (II)
ζ ,2k0

(η)ei2k0·x
)
+ . . .. (30)

We note that the coefficients δϕ (II)
ζ ,nk0

(η) have a contribution from the modes nk,

(n−1)k and (n+1)k. We set δϕ (II)
ζ ,nk0

(η) = 0 for all n ≥ 2, simply by imposing the

required relations between the parameters ζ (II)
±k0

, ζ (II)
±2k0

, ζ (II)
±3k0

, etc. It is easy to see

that |ζ (II)
±nk0

| ∼ εn|ζ (II)
0 |.

The conditions above ensure that there are no terms in e±ink0·x (with n ≥ 2) ap-
pearing in the expectation value of the energy-momentum tensor. That is necessary
for the compatibility of our state ansatz with the semiclassical Einstein’s equations.
We studied these in detail up to to the first order in ε .

The zero order equations are identical to those we found in constructing the SSC-
I . They fix the construction of SSC to the lowest order, i.e. they determine the
relation between a(II) and ζ (II)

0 .
Considering the next order one obtains after a lengthy calculation the key re-

sult, that enables us to carry out the construction in a complete manner: That the
equations can be combined into a simple dynamical equation for the Newtonian po-
tential, which is independent of the first order quantities and where, at the level of
precision we are working at, the equation above becomes simply:
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P̈+ ε (II)H (II)Ṗ+
[
k2

0 − ε (II)H 2(II)
]

P = 0. (31)

The general solution

P(η) =C1 η
1
2 [1+ε (II)]Jα(−kη)+C2 η

1
2 [1+ε (II)]Yα(−kη), (32)

where Jα(−kη) and Yα(−kη) are the Bessel functions of the first and second kind,
α = [1+3ε (II)]/2.

Einstein’s equations lead, as is well known, to constraints which, at this order
provide relations involving the initial values that would determine the specific solu-
tion P(η):

ε
(

P
Ṗ

)
=

√
4πGε (II)H (II)

k2
0 −H 2(II)ε (II) ×

(
(3H (II) −am

√
3/ε (II)) 1

(am
√

3/ε (II)H (II) − k2
0 +(ε (II) −3)H 2(II)) −H (II)

)
·

(
δϕ (II)

ζ ,k0

δ ϕ̇ (II)
ζ ,k0

)
. (33)

Thus given δϕ (II)
ζ ,k0

(ηc) and δ ϕ̇ (II)
ζ ,k0

(ηc), we have a completely determined space-time
metric. In particular, we have a completely determined function P(η) and thus, as
discussed around equation (26), a completely specified set of mode functions for the
expansion of the field operator. Furthermore, those determine the state parameters
ζk0 (and thus the rest as well). Thus, we have a complete SSC-II (to this order in ε).

The collapse: Joining SSC-I and SSC-II

. Next, we want to consider a space-time that includes a collapse. That is, a space-
time that results from the the matching of the two constructions. We will consider
here that the collapse corresponds to a hypersurface that is matched to the hyper-
surfaces η = ηc of SSC-I and SSC-II. Note that this gives such hypersurface Σc a
preferred status in the resulting space-time, and is not something to be thought as re-
lated to a gauge freedom: To the past of that hypersurface Σc the space-time is H&I,
and to the future it is not. We will assume here the induced metric is continuous on
Σc. This requires P(ηc) = 0 and thus

(3H (II) −am
√

3/ε (II))δϕ (II)
ζ ,k0

(ηc)+δ ϕ̇ (II)
ζ ,k0

(ηc) = 0, (34)

and therefore
εṖ =−

√
4πGε (II)H (II)δϕ (II)

ζ ,k0
(ηc), (35)

which indicates a discontinuity in the extrinsic curvature of the hypersurface Σc.
Assume that the collapse is characterized by a loose analogy with “an imprecise

measurement” (of the operators ϕ̂ (I)
k0
(η)) in standard QT: Before the collapse, the

operator had zero expectation value but an uncertainty ∆ϕ̂ (I)
k0
(ηc), and thus we as-
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sume that after the collapse, the new expectation value will fall in that range. We
thus consider what would be the energy momentum tensor computed using a state
that results from such measurement (on the SSC-I side of Σc) and demand that the
state on the SSC-II side be such that the energy momentum tensor on the SSC-II
side of Σc be exactly that. The final result is then:

δϕ (II)
ζt ,k0

(ηc) = xk0

√
⟨0(I)

k0
|
[
∆ϕ̂ (I)

k0
(ηc)

]2
|0(I)

k0
⟩ ≈ xk0

a(ηc)
−1

√
h̄
2k

with xk0
a random number taken from a distribution characterized by a Gaussian

function centered at zero with unit-spread. A choice of the random number xk0 then
determines the SSC-II.

Thus, we have a well defined framework where one could, in principle, carry out
all the analysis of the collapse approach to the inflationary origin of the seeds of
cosmic structure.

9 Phenomenological studies

In a realistic situation, we need to consider a collapse of not just one, but of all
the modes. Thus in contrast with the previous analysis, we have adopted for this
purpose a simplified treatment that makes the realistic problem manageable. We
note that considering simultaneously all modes is required if we want to compare
the theory with observations.

In this simplified treatment, one avoids the complications of the previous treat-
ment by ignoring the multiplicity of Hilbert spaces and considering the quantum
states that result from collapses to be elements of the Hilbert space based on the ini-
tial homogeneous and isotropic space-time (as is done in standard treatments). We
thus split the treatment into that of a classical homogeneous (“background”) part
and an in-homogeneous part (“fluctuation”), i.e. g = g0 +δg, ϕ = ϕ0 +δϕ .

The background is taken again to be Friedmann-Robertson universe (with van-
ishing Newtonian potential), and the homogeneous scalar field ϕ0(η). In the previ-
ous, more precise treatment this would have corresponded to the zero mode of the
quantum field.

The main difference, with respect to the ordinary approach, will be in the spa-
tially dependent perturbations. Here, our approach indicates we should quantize the
scalar field but not the metric perturbation.

We will set a = 1 at the “present cosmological time”, and assume that the infla-
tionary regime ends at a value of η = η0, negative and very small in absolute terms.
Again, in our case the semiclassical Einstein’s equations, at lowest order lead to

∇2Ψ = 4πGϕ̇0⟨δ ϕ̇⟩= s⟨δ ϕ̇⟩, (36)

where s ≡ 4πGϕ̇0.
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Consider the quantum theory of the field δϕ . In this practical treatment it is
convenient to work with the rescaled field variable y = aδϕ and its conjugate mo-
mentum π = δ ϕ̇/a. We decompose the field and momentum operators as:

y(η ,x) =
1
L3 ∑

k
eik·xŷk(η), πy(η ,x) =

1
L3 ∑

k
eik·xπ̂k(η), (37)

where ŷk(η) ≡ yk(η)âk + ȳk(η)â+−k and π̂k(η) ≡ gk(η)âk + ḡk(η)â†
−k. The usual

choice of modes yk(η) = 1√
2k

(
1− i

ηk

)
exp(−ikη), gk(η) = −i

√
k
2 exp(−ikη),

which leads to what is known as the Bunch-Davies vacuum: the state defined by
âk|0⟩= 0 . At this point it is worthwhile to remind the reader that this state is trans-
lationally and rotationally invariant, as can be easily checked by applying the corre-
sponding rotation and displacement operators to it. Note also that ⟨0|ŷk(η)|0⟩ = 0
and ⟨0|π̂k(η)|0⟩= 0 . The collapse will modify the state and thus expectation values
of the operators ŷk(η) and π̂k(η).

Next, we specify the rules according to which the collapse happens, and thus
the state |Θ⟩ after the collapse. We assume that after the collapse, the expectation
values of the field and momentum operators in each mode will be related to the
uncertainties of the pre-collapse state (these quantities for the vacuum are not zero).

In the vacuum state, ŷk and π̂k are characterized by Gaussian wave functions
centered at 0 with spread ∆yk and ∆πyk, respectively.

We will want to consider various possibilities for the detailed form of this col-
lapse. Thus, for their generic form, associated with the ideas above, we assume that
at time ηc

k the part of the state corresponding to the mode k undergoes a sudden
jump so that, immediately afterwards, the state describing the system is such that

⟨ŷk(ηc
k )⟩Θ = xk,1

√
∆ ŷk, ⟨π̂k(ηc

k )⟩Θ = xk,2

√
∆π̂y

k , (38)

where xk,1,xk,2 are (single specific values) selected randomly from within a Gaussian
distribution centered at zero with spread one.

Finally, using the evolution equations for the expectation values (i.e. using Ehren-
fest’s Theorem), we obtain ⟨ŷk(η)⟩ and ⟨π̂k(η)⟩ for the state that resulted from the
collapse for all later times.

Analysis of the phenomenology

The semi-classical version of the perturbed Einstein’s equation that, in our case,
leads to ∇2Ψ = 4πGϕ̇0⟨δ ϕ̇⟩ indicates that the Fourier components at the conformal
time η are given by:

Ψk(η) =−(s/ak2)⟨π̂k(η)⟩. (39)

Prior to the collapse, the state is the BD vacuum, and it is easy to see that
⟨0|π̂k(η)|0⟩ = 0, so in that situation we would have Ψk(η) = 0. However, after
the collapse has occurred, we have instead: Ψk(η) = −(s/ak2)⟨Θ |π̂k(η)|Θ⟩ ̸= 0.
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From those quantities, we can reconstruct the Newtonian potential (for times after
the collapse):

Ψ(η ,x) =
1
L3 ∑

k
eik·xΨk(η) = ∑

k

sU(k)
k2

√
h̄k
L3

1
2a

F(k)eik·x, (40)

where F(k) contains, besides the random quantities xk,i, i = 1,2, the information
about the time at which the collapse of the wave function for the mode k occurs.

We now focus our attention on the “Newtonian potential” on the surface of last
scattering: Ψ(ηD,xD), where ηD is the conformal time at decoupling and xD are co-
moving coordinates of points on the last scattering surface corresponding to us as
observers. The quantity is identified with the temperature fluctuations on the surface
of last scattering. Thus:

αlm =
∫

Ψ(ηD,xD)Y ∗
lmd2Ω . (41)

The factor U(k) is call the transfer function and represents known physics like the
acoustic oscillations of the plasma. Now, putting all this together we find,

αlm = s

√
h̄
L3

1
2a ∑

k

U(k)
√

k
k2 F(k)4πil jl(|k|RD)Ylm(k̂), (42)

where jl(x) is the spherical Bessel function of the first kind, RD ≡ ||xD||, and k̂ indi-
cates the direction of the vector k. Note that in the usual approaches it is impossible
to produce an explicit expression for this quantity, other than zero.

Thus αlm is the sum of complex contributions from all the modes, i.e., the equiv-
alent to a two dimensional random walk, whose total displacement corresponds to
the observational quantity. We then evaluate the most likely value of such quantity,
and then pass to the continuum obtaining:

|αlm|2M.L. =
s2h̄

2πa2

∫ U(k)2C(k)
k4 j2

l (|k|RD)k3dk. (43)

The function C(k) encodes information contained in F(k). For each model of col-
lapse it has a slightly different functional form.

It turns out that in order to get a reasonable spectrum, we have one single simple
option: zk must be almost independent of k. That is: ηc

k = z/k.
This result shows that the details of the collapse have observational conse-

quences! In fact, we have

C(k) = 1+
2
z2

k
sin2 ∆k +

1
zk

sin(2∆k), (44)

where ∆k = kη−zk, zk =ηc
k k with η representing the conformal time of observation,

and ηc
k the conformal time of collapse of the mode k.
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If zk is independent of k this will not modify the form of the spectrum because
these functions become constants. We can consider simple departures from the pat-
tern ηc

k = z/k, say, assuming ηc
k = A/k+B. These can now be compared with ob-

servations! We have carried out a preliminary exploration [21] considering the de-
partures from the HZ spectrum, and a more detailed analysis [22] incorporating the
well understood late time physics (acoustic oscillations, etc.) and comparing directly
with the observational data. Those represent the first limits on a collapse model com-
ing from the CMB observations. This analysis can now be used to constrain a more
specific version of the collapse theories, particularly those schemes which indicate
specific ranges for the collapse times and the specific operators involved in the col-
lapse process.

10 Conclusions

We have argued elsewhere extensively about the need to deal with the fact that the
standard accounts for the generation of the primordial seeds of cosmic structure
from quantum fluctuations during inflation are not completely satisfactory. In the
present work, I have focused on the formal implementation of such ideas, and on
the fact that, even if one wanted to ignore the conceptual issues that we have pointed
out in previous works, but at the same time, one wanted to consider the possibility
of a maximal characterization of our universe, one would be making a similar kind
of description as that used in the collapse approach we favor.

We have presented a formalism that allows the incorporation of a collapse pro-
cess within a semiclassical treatment of gravity interacting with quantum fields.
Finally, I have made a brief overview of the phenomenological analysis that relied
on a simplified treatment, and which made it manageable to consider the realistic
situation involving collapses in all modes of the quantum field.

There is, in fact, an interesting possibility of connection of the ideas presented
here to some appearing in the context of the singularity resolution LQG, where one
expects a failure of the approach to lead to even an approximate characterization,
in terms of classical geometry. In this case we have found a specific kind of break-
down of the space-time description at the collapsing hypersurface: A discontinuity
in the extrinsic curvature of such hypersurface. The amount of such discontinuity is
related to the details of the collapse. The investigation of this issue in the context of
candidate theories for quantum space-time would be very interesting.

We believe that one of the best ways to inquire about the interface of quantum and
gravitation is by pushing our attempts to describe space-time in the context where
quantum effects become important. The inflationary situation offers us a unique op-
portunity. In order for us to be able to take full advantage of such window into the
unknown, we need to start by recognizing the shortcomings in our current treat-
ments. We trust that the program here outlined represents the first steps in that di-
rection.
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