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Abstract Dynamics of time-like geodesics in the static and axially symmetric field
of a black hole surrounded by a thin disc is studied by two recurrence methods,
the recurrence plots (RPs) and the average of directional vectors (ADVs). Their
results supplement the information obtained before from Poincaré surfaces of sec-
tion and from phase-variable evolutions and the corresponding power spectra. The
occurrence of chaos due to the presence of ambient matter may be important for
evolution and appearance of astrophysical black-hole systems.

Inspired by models of accreting astrophysical black holes, we consider a simple,
static and axisymmetric exact configuration of a black hole surrounded by a con-
centric thin disc or ring. Due to the presence of the additional source, the geodesic
dynamics – originally completely integrable in the Schwarzschild field – generally
becomes chaotic. Having illustrated this on Poincaré sections and on phase-variable
time series and their power spectra [1], we have now turned to two recurrence meth-
ods which are based on statistics (i) over recurrences of the orbits to cells of the
phase space (the recurrence plots [2, 3], RPs) and (ii) over direction in which the or-
bits recurrently pass through the cells (the average of directional vectors [4], ADVs).
Here just a short glimpse on the results is given obtained for time-like geodesics in
the field of a black hole (of mass M) surrounded by the inverted 1st Morgan-Morgan
disc with mass M = 0.5M and inner Schwarzschild radius r = 15M; see [5, 6, 7]
for details of our earlier results.

RPs consist in recording the recurrence matrix whose components (zeros or ones)
indicate (non-)recurrences of a given orbit to selected cells. This symmetric matrix
itself reveals the nature of dynamics, but here we rather show several examples of
useful “quantifiers” which can be computed from the recurrence data. The simplest
of them is the recurrence rate RR, given by the ratio of the recurrence points within
all points of the matrix. Another one called DET is given by ratio of the points
which form a diagonal line longer than a certain minimum lmin within all the recur-
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rence points. The inverse of the longest diagonal DIV = 1/Lmax has been shown to
provide a rough estimate of the largest Lyapunov exponent. A lower estimate of the
sum of positive Lyapunov exponents is given by the correlation (or Rényi’s) entropy
K̂2 , determined by a slope of the cumulative histogram plotted (in log scale) against
the diagonal length l (for large l). Statistics over vertical (or horizontal) lines of
the matrix brings similar quantifiers, for example, LAM is a counter-part of DET
and V ENT ROPY is obtained from probability that a chosen vertical line has a pre-
scribed length l. Note that the recurrence matrix and all the quantifiers of course
depend on the chosen size of spatial cells and on time step with which the orbits are
processed.
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Fig. 1 Poincaré section (top left) with each orbit coloured according to the value of DIV in log
scale. The red line indicates starting points. The other plots show several recurrence quantifiers as
functions of the initial radius of the orbits.

We launch geodesic particles with zero radial velocity from different radii be-
tween r = 8M and r = 25M with specific energy E = 0.955 and specific angular
momentum L = 4M. Poincaré section of several hundreds of such orbits coloured
according to the value of DIV is depicted in Fig. 1 together with the behavior of
several RP quantifiers.
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Fig. 2 Poincaré surface of section with each orbit plotted in different colour (top left); comparison
of K2 against DIV (top right); cumulative histograms of diagonal lines in RP for several strongly
chaotic (middle left) and weakly chaotic (middle right) with the linear regression yielding K2; the
ADV parameter Λ̄ for small (bottom left) and big (bottom right) time lags.

The other method, ADVs, is based on monitoring the evolution of tangent to the
trajectory in selected boxes of the phase space “reconstructed”, for a given data se-
ries x(τ), by taking the delayed replicas x(τ), x(τ−∆τ), x(τ−2∆τ), . . . , x(τ−d∆τ)
as its axes, where ∆τ is a chosen time shift. The vectors obtained for a large num-
ber of transits through the j-th box are summed, the resulting vector is normalised
and the norm is averaged over all boxes which were crossed n-times. Finally, the
dependence of this average on n and also of the averaged quadratic difference from
random-walk case on time lag, Λ̄(∆τ), are analysed. For random data the average
decreases more quickly than for a deterministic signal; for a regular orbit, it remains
1 theoretically. The ADV method was originally proposed to distinguish between
deterministic and random data, but we have found it is also sensitive to different
degrees of chaoticity.

The comparison of the above methods is illustrated in Fig. 2. Several trajecto-
ries have been followed there for a very long time: the most chaotic trajectories
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up to τmax = 250000M while other to τmax = 800000M (one orbital period repre-
sents some 300M of proper time). The particle position is recorded with the step
∆τ = 0.25M.1 Each trajectory is plotted in a different colour; regular orbits are
green, weakly chaotic orbits range from light blue to orange and yellow and the
most chaotic ones are purple. It is seen that the character of orbits is revealed by
Poincaré diagram as well as by the values of DIV or K2, and also from the be-
haviour of Λ̄(∆τ). We pay particular attention to comparison of the quantities DIV
or K2 (bottom left). Namely, although K2 is considered a more precise and reliable
estimate of orbital divergence, its correct determination is tricky and less suitable for
an automatic procedure (see [5] for details). The DIV quantifier is obtained much
more easily and reliably. The plot shows that the log values of DIV and K2 are
roughly proportional and that different types of motion (regular, weakly chaotic and
strongly chaotic) yield clearly different values of both quantities.

In the last two plots of Fig. 2, the ADV main result Λ̄ is shown against the
time lag ∆τ . At bottom left, the time lag ranges from 10M to 2000M (more than
6 orbital periods); Λ̄(∆τ) for strongly chaotic trajectories (purple) is rapidly de-
creasing, while weakly chaotic and regular trajectories look quite similar. At bottom
right, Λ̄(∆τ) is given for much bigger time lags (250000M ÷ 252000M); here the
difference between weakly chaotic and regular orbits becomes obvious.

We would like to thank the projects GACR-205/09/H033, SVV-267301 and
GAUK-428011 (PS), GACR-202/09/0772 and MSM0021620860 (OS).
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6. P. Suková, Chaotic geodesic motion around a black hole and disc, J. Phys.: Conf. Ser. 314,
012087 (2011)
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